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Abstract. Spatial reflection symmetries are common in many academic and industrial
CFD configurations. Given a mesh with s symmetries, it is possible to transform Poisson’s
equation into a set of 2s fully-decoupled subsystems. By doing so, we can increase the
arithmetic intensity, reduce the memory footprint, and improve the convergence of the
linear solvers. We have recently investigated ways to exploit symmetries for precondition-
ing Poisson’s equation. With this aim, we have recalled the close similarity of the different
subsystems to combine low-rank corrections with standard preconditioning techniques–
namely, FSAI and AMG. This talk will overview the different strategies considered and
their resulting performance.

1 INTRODUCTION

Divergence constraints are present in many disciplines and usually lead to a Poisson
equation whose solution is one of the most computationally intensive parts of scientific sim-
ulation codes. Despite the relevance of theoretical aspects like the solvers’ time complexity
or stability, unrelated computational factors may make them impractical for large-scale
simulations. The fact that most algorithms have a low arithmetic intensity makes them
enjoy a small fraction of the systems’ peak performances. Approaches trying to remedy
this are generally based on reducing memory traffic, solving multiple right-hand sides
(RHSs), using mixed-precision algorithms or adapting more compute-intensive methods.
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This work focuses on a strategy exploiting spatial reflection symmetries to block diag-
onalise Poisson’s equation [1]. Then, thanks to the subsystems’ close similarity, we add
another level of approximation by applying to each of them the same preconditioner, later
corrected by means of relatively cheap low-rank corrections. This strategy allows replac-
ing the standard sparse matrix-vector product (SpMV) with the more compute-intensive
sparse matrix-matrix product (SpMM) [2] in the application of factored sparse approximate
inverse (FSAI) and Algebraic Multigrid (AMG) preconditioners.

Without loss of generality, we will focus our numerical experiments on incompressible
CFD simulations, arising our Poisson equation from an application of the fractional step
method and equalling:

∇ ·
(
1

ρ
∇p

)
=

1

∆t
∇ · vp, (1)

where ρ, p and vp stand for the density, pressure and predictor velocity fields, respectively.
Then, its discrete version will read:

Ax = b, (2)

where b ∈ range (A), and the coefficient matrix, A, stands for the discrete Laplace operator
and is assumed symmetric positive semi-definite. Further details about the discretisation
can be found in [3].

2 POISSON’S EQUATION BLOCK DIAGONALISATION

For the sake of clarity, let us consider a mesh with a single reflection symmetry. Addi-
tionally, let us impose the same grid points’ ordering on each of the sides [1]. As a result,
the mesh is halved into two subdomains and all the scalar fields satisfy:

x =

(
x1

x2

)
∈ Rn, (3)

where x1, x2 ∈ Rn/2 correspond to x’s restriction to each of the subdomains. Then,
spatially symmetric points are in the same position within the subvectors, and the discrete
Laplace operator satisfies:

A =

(
Ainn Aout

Aout Ainn

)
∈ Rn×n, (4)

where n stands for the mesh size and Ainn, Aout ∈ Rn/2×n/2 for the inner- and outer-
subdomain couplings, respectively. Remarkably enough, virtually all the operators satisfy
the following structure:

H =

(
Hinn Hout

Hout Hinn

)
∈ Rn×m, (5)

where Hinn, Hout ∈ Rn/2×m/2 stand for the inner- and outer-subdomain couplings, being
the latter substantially sparser, if not null.

In such a context, we can define the following change-of-basis matrix:

P :=
1√
2

(
In/2 In/2
In/2 −In/2

)
∈ Rn×n, (6)
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which satisfies P−1 = P . Then, changing the basis of A by means of P leads to:

Â := PAP−1 =

(
Ainn + Aout 0

0 Ainn − Aout

)
, (7)

decomposing eq. (2) into two fully-decoupled half-sized subsystems, Â1 := Ainn+Aout and
Â2 := Ainn − Aout. Algorithm 1 summarises the resulting strategy.

Algorithm 1 Poisson solver exploiting one reflection symmetry

Require: Ainn, Aout ∈ Rn/2×n/2 and b ∈ range(A) ⊆ Rn

1: procedure Solve(b, Â)
2: Transform b̂ = Pb
3: Decoupled solution of Â1x̂1 = b̂1 and Â2x̂2 = b̂2
4: Inverse transform x = P−1x̂
5: return x
6: end procedure

3 LOW-RANK CORRECTIONS FOR FSAI

The idea of applying low-rank corrections arises from the close similarity between Â’s
subsystems. Indeed, in eq. (6), all the outer- are substantially sparser than the inner-
couplings. In fact, rank(Aout) = O(n2/3), whereas rank(Ainn) = O(n). Hence:

rank (Aout) ≪ rank (Ainn) , (8)

and it makes sense to introduce another level of approximation to FSAI by assuming that:

Â1 ≃ Ainn and Â2 ≃ Ainn. (9)

In the context of preconditioning linear systems, much work has recently been devoted
to low-rank matrix representations [4, 5, 6]. The FSAI of Ainn provides an approximation
to the inverse of Ainn’s lower Cholesky factor, Ginn ≃ L−1

inn, which ensures that GT
innGinn ≃

A−1
inn. Then, we can define the following auxiliary matrix for each subsystem Âi:

Y := In/2 −GinnÂiG
T
inn ∈ Rn/2×n/2, (10)

whose definition yields Y (In/2 − Y )−1 = (GinnÂiG
T
inn)

−1 − In/2, finally leading to:

Â−1
i = GT

innGinn +GT
innY (In/2 − Y )−1Ginn. (11)

By virtue of eq. (8), we can expect the “full-rank” correction of eq. (11) to be well rep-
resented by a low-rank approximation [4]. Hence, let us truncate Y ’s eigendecomposition
to account for its k most relevant eigenpairs:

Y ≃ VkΣkV
T
k , such that Vk ∈ Rn/2×k and Σk ∈ Rk×k. (12)
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Then, by defining Wk := GT
innVk ∈ Rn/2×k and Θk := Σk(Ik − Σk)

−1 ∈ Rk×k, eqs. (11)
and (12) can be combined to give the following low-rank corrected FSAI:

Â−1 ≃ I2 ⊗GT
innGinn +

(
Wk,1Θk,1W

T
k,1 0

0 Wk,2Θk,2W
T
k,2

)
, (13)

which allows replacing SpMV with SpMM in Ginn’s application.

In the conference, we will present the strategy with more detail, extend it to AMG,
and provide meaningful numerical results illustrating the advantages and disadvantages
of our proposal.
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RIS3CAT-FEDER. Àdel Alsalti-Baldellou has also been supported by the predoctoral
grants DIN2018-010061 and 2019-DI-90, given by MCIN/AEI/10.13039/501100011033
and the Catalan Agency for Management of University and Research Grants (AGAUR),
respectively.

REFERENCES

[1] A. Gorobets, F. Trias, R. Borrell, O. Lehmkuhl, and A. Oliva, “Hybrid MPI+OpenMP
parallelization of an FFT-based 3D Poisson solver with one periodic direction,” Com-
put. Fluids, vol. 49, no. 1, pp. 101–109, 2011.

[2] H. Anzt, S. Tomov, and J. Dongarra, “On the performance and energy efficiency
of sparse linear algebra on GPUs,” Int. J. High Perform. Comput. Appl., vol. 31,
pp. 375–390, sep 2017.

[3] F. X. Trias, O. Lehmkuhl, A. Oliva, C.-D. Pérez-Segarra, and R. W. C. P. Verstap-
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