An AMG reduction framework for Poisson's equation in CFD simulations

Àdel Alsalti-Baldellou^{1,2} Carlo Janna³ Xavier Álvarez-Farré¹ F. Xavier Trias¹

> ¹Heat and Mass Transfer Technological Center, Technical University of Catalonia

> > ²Termo Fluids SL, http://www.termofluids.com/

³Department of Civil, Environmental and Architectural Engineering, University of Padova

May 11th 2023

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Index

Context of the work

- Targetted applications
- Poisson's equation in CFD
- 2 Solving Poisson's equation
 - Block diagonal Laplace operator
 - Iterative solvers exploiting symmetries
- Preconditioning Poisson's equation
 - SpMM-based FSAI
 - SpMM-based AMG
- 4 Concluding remarks

Context of the work \bullet

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Context of the work

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

CFD applications - 1

Figure: Simulation of flow around a square cylinder¹ and Rayleigh-Bénard convection².

 $^{^1\}mathsf{F.X.}$ Trias et al. (2015). "Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study" in *Computers and Fluids*.

²F. Dabbagh et al. (2017). "A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection" in *Physics of Fluids*.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

CFD applications - 2

Figure: Simulation of turbulent flow over the DrivAer fastback vehicle model³.

³D. E. Aljure et al. (2018). "Flow over a realistic car model: Wall modeled large eddy simulations assessment and unsteady effects" in *Journal of Wind Engineering and Industrial Aerodynamics*.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

CFD applications – 3

Figure: Simulation of brazed and expanded tube-fin heat exchangers⁴.

⁴L. Paniagua et al. (2014). "Large Eddy Simulations (LES) on the Flow and Heat Transfer in a Wall-Bounded Pin Matrix" in *Numerical Heat Transfer, Part B: Fundamentals*.

Context of the work ○000●○ Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

CFD applications - 4

Figure: Simulation of wind plant and array of "buildings" (from the internet).

Context of the work ○○○○○● Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Poisson's equation in incompressible CFD

Fractional Step Method (FSM)

- **9** Evaluate the auxiliar vector field $\mathbf{r}(\mathbf{v}^n) \coloneqq -(\mathbf{v} \cdot \nabla)\mathbf{v} + \nu \Delta \mathbf{v}$
- $\textbf{@} \text{ Evaluate the predictor velocity } \mathbf{v}^p \coloneqq \mathbf{v}^n + \Delta t \left(\frac{3}{2} \mathbf{r}(\mathbf{v}^n) \frac{1}{2} \mathbf{r}(\mathbf{v}^{n-1}) \right)$
- **③** Obtain the pressure field by solving a **Poisson equation**:

$$abla \cdot \left(rac{1}{
ho}
abla p^{n+1}
ight) = rac{1}{\Delta t}
abla \cdot \mathbf{v}^p$$

 $\textcircled{O} \text{ Obtain the new divergence-free velocity } \mathbf{v}^{n+1} = \mathbf{v}^p - \nabla p^{n+1}$

Context of the work ○○○○○● Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Poisson's equation in incompressible CFD

Fractional Step Method (FSM)

- **9** Evaluate the auxiliar vector field $\mathbf{r}(\mathbf{v}^n) \coloneqq -(\mathbf{v} \cdot \nabla)\mathbf{v} + \nu \Delta \mathbf{v}$
- $\textbf{@} \text{ Evaluate the predictor velocity } \mathbf{v}^p \coloneqq \mathbf{v}^n + \Delta t \left(\frac{3}{2} \mathbf{r}(\mathbf{v}^n) \frac{1}{2} \mathbf{r}(\mathbf{v}^{n-1}) \right)$
- **Obtain the pressure field by solving a Poisson equation**:

$$\nabla \cdot \left(\frac{1}{\rho} \nabla p^{n+1}\right) = \frac{1}{\Delta t} \nabla \cdot \mathbf{v}^p$$

③ Obtain the new divergence-free velocity $\mathbf{v}^{n+1} = \mathbf{v}^p - \nabla p^{n+1}$

Poisson's equation for incompressible single-phase flows

Continuous:

$$\Delta p = \frac{\rho}{\Delta t} \nabla \cdot \mathbf{v}^p$$

Context of the work ○○○○○● Solving Poisson's equation 000000000

Preconditioning Poisson's equation

Concluding remarks 000

Poisson's equation in incompressible CFD

Fractional Step Method (FSM)

- **9** Evaluate the auxiliar vector field $\mathbf{r}(\mathbf{v}^n) \coloneqq -(\mathbf{v} \cdot \nabla)\mathbf{v} + \nu \Delta \mathbf{v}$
- $\textbf{@} \text{ Evaluate the predictor velocity } \mathbf{v}^p \coloneqq \mathbf{v}^n + \Delta t \left(\frac{3}{2} \mathbf{r}(\mathbf{v}^n) \frac{1}{2} \mathbf{r}(\mathbf{v}^{n-1}) \right)$
- **Obtain the pressure field by solving a Poisson equation**:

$$\nabla \cdot \left(\frac{1}{\rho} \nabla p^{n+1}\right) = \frac{1}{\Delta t} \nabla \cdot \mathbf{v}^p$$

③ Obtain the new divergence-free velocity $\mathbf{v}^{n+1} = \mathbf{v}^p - \nabla p^{n+1}$

Poisson's equation for incompressible single-phase flows

Continuous:

$$\Delta p = \frac{\rho}{\Delta t} \nabla \cdot \mathbf{v}^p$$

Discrete:

$$\mathsf{L}p_h = \frac{\rho}{\Delta t} \mathsf{M} v_h^p$$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Solving Poisson's equation

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Meshes with symmetries

		•				
xx x x x x		PP34E354E254E254E254E254E254E254E254E254E254E2				
xxx x x x x						
xx x x x x						
xx x x x x	· · · · · · · · · · · · · · · · · · ·					
xx x x x x		xxx x x x				
xx x x x x						
xx x x x x						
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx						
(a) 1 s	ymmetry	(b) 2 symmetries				

Figure: 2D meshes with varying number of symmetries.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

"Mirrored" unknowns' ordering

	_	_												1				
же »	¢	×	×	×	jth X	jth •			 . . 	반	933 923 101	┋┋┋┋			= 3 =		E ≣:≣ ∃ I I	[王岳壇 [エピ四 ・1・144
ו•• ,	•	×	×	×	×	• • •	· ! !		+ - FIH ! . !.W ! . !!!!	HI W	 	ith			• • •		ith •	
	¢	×	×	×	×	•	· · ·					• •	•		• • •		+ 	
×** ,	•	×	×	×	×	•	 			11 11	jth •		•	•	•			jth ● *
. sec	¢	×	×	×	×		· .	•	1 - FIM 1 . I.W 1 . I.W		* X	×	×	×	•	•		jth ● 1. UJ
ו• ,	¢	×	×	×	×		· ·		1 - FIM 1 - I.W 1 - I.W	**	××	×	×	×	•		+ ! . !	
,	•	×	ith X	×	×	•		ith •		**	* *	ith	×	×	• • •		ith •	
	•	× ×	×	* *	*				1 · · · · · · · · · · · · · · · · · · ·	**	× × × × × ×	× × ×	× ×	*	 E 3 E 1		+ E = = = =	4 ・ ・ 〒 〒 岡 岡
(a) 1 symmetry							(b) 2 symmetries											

Figure: "Mirrored" ordering on 2D meshes with a varying no. of symmetries.

Preconditioning Poisson's equation

Concluding remarks 000

Discrete Laplace operator and mesh symmetries

$$\mathsf{P} = \frac{1}{\sqrt{2^s}} \begin{bmatrix} p \\ \bigotimes_{i=1}^p \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{bmatrix} \otimes \mathbb{I}_{n/2^s} \in \mathbb{R}^{n \times n}$$

Preconditioning Poisson's equation

Concluding remarks

Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries, and let us define the following change of basis:

$$\mathsf{P} = \frac{1}{\sqrt{2^s}} \begin{bmatrix} p \\ \bigotimes_{i=1}^p \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{bmatrix} \otimes \mathbb{I}_{n/2^s} \in \mathbb{R}^{n \times n}$$

Then, thanks to the "mirrored" ordering, P transforms L:

$$\mathsf{L} = \begin{pmatrix} \mathsf{L}_{1-1} & \dots & \mathsf{L}_{1-2^s} \\ \vdots & \ddots & \vdots \\ \mathsf{L}_{2^s-1} & \dots & \mathsf{L}_{2^s-2^s} \end{pmatrix} \in \mathbb{R}^{n \times n}$$

into 2^s decoupled subsystems⁵:

$$\hat{\mathsf{L}} = \begin{pmatrix} \hat{\mathsf{L}}_1 & & \\ & \ddots & \\ & & \hat{\mathsf{L}}_{2^s} \end{pmatrix} \in \mathbb{R}^{n \times n}$$

^eA. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation", in *Journal of Computational Physics*.

Preconditioning Poisson's equation

Concluding remarks

Discrete Laplace operator and mesh symmetries

$$\mathsf{P} = \frac{1}{\sqrt{2^s}} \begin{bmatrix} p \\ \bigotimes_{i=1}^p \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{bmatrix} \otimes \mathbb{I}_{n/2^s} \in \mathbb{R}^{n \times n}$$

Figure: 3D structured mesh exploiting s = 1 symmetries.

Preconditioning Poisson's equation

Concluding remarks

Discrete Laplace operator and mesh symmetries

$$\mathsf{P} = \frac{1}{\sqrt{2^s}} \begin{bmatrix} p \\ \bigotimes_{i=1}^p \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{bmatrix} \otimes \mathbb{I}_{n/2^s} \in \mathbb{R}^{n \times n}$$

Figure: 3D structured mesh exploiting s = 2 symmetries.

Preconditioning Poisson's equation

Concluding remarks

Discrete Laplace operator and mesh symmetries

$$\mathsf{P} = \frac{1}{\sqrt{2^s}} \begin{bmatrix} p \\ \bigotimes_{i=1}^p \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{bmatrix} \otimes \mathbb{I}_{n/2^s} \in \mathbb{R}^{n \times n}$$

Figure: 3D structured mesh exploiting s = 3 symmetries.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Resulting algorithm

Algorithm Poisson solver exploiting s mesh symmetries

- **1** Transform forward the RHS: $\hat{b} = Pb$
- 2 Decoupled solution of the 2^s subsystems: $\hat{L}\hat{x} = \hat{b}$
- **③** Transform backward the solution: $x = P^{-1}\hat{x}$

where:

$$\mathsf{P} = \frac{1}{\sqrt{2^s}} \begin{bmatrix} \sum_{i=1}^p \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \end{bmatrix} \otimes \mathbb{I}_{n/2^s}, \ \ \mathsf{P}^{-1} = \mathsf{P},$$

and Step 2 corresponds to inverting:

$$\begin{pmatrix} \hat{\mathsf{L}}_1 & & \\ & \ddots & \\ & & \hat{\mathsf{L}}_{2^s} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}}_1 \\ \vdots \\ \hat{\mathbf{x}}_{2^s} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{b}}_1 \\ \vdots \\ \hat{\mathbf{b}}_{2^s} \end{pmatrix}$$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Iterative solvers and mesh symmetries

The subsystems' smaller size has multiple immediate advantages. Namely:

- A reduction in Poisson solvers' iteration count
- A reduction in Poisson solvers' memory footprint
- An increase in Poisson solvers' arithmetic intensity

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Iterative solvers and mesh symmetries

The subsystems' smaller size has multiple immediate advantages. Namely:

- A reduction in Poisson solvers' iteration count
- A reduction in Poisson solvers' memory footprint
- An increase in Poisson solvers' arithmetic intensity

In general, \hat{L} can be split as:

$$\hat{L} = \dots = \begin{pmatrix} L_{inn} & & \\ & \ddots & \\ & & L_{inn} \end{pmatrix} + \begin{pmatrix} L_{out}^{(1)} & & \\ & \ddots & \\ & & L_{out}^{(2^s)} \end{pmatrix}$$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Iterative solvers and mesh symmetries

The subsystems' smaller size has multiple immediate advantages. Namely:

- A reduction in Poisson solvers' iteration count
- A reduction in Poisson solvers' memory footprint
- An increase in Poisson solvers' arithmetic intensity

In general, \hat{L} can be split as:

$$\hat{L} = \dots = \begin{pmatrix} L_{inn} & & \\ & \ddots & \\ & & L_{inn} \end{pmatrix} + \begin{pmatrix} L_{out}^{(1)} & & \\ & \ddots & \\ & & L_{out}^{(2^s)} \end{pmatrix}$$

In particular, compact stencils only coupling adjacent nodes result in:

$$\hat{L}\mathbf{v} = \underbrace{(\mathbb{I}_{2^s} \otimes \mathsf{L}_{\mathsf{inn}}) \mathbf{v}}_{\mathsf{Sparse matrix-matrix}} + \underbrace{\operatorname{diag}\left(\mathbf{l}_{\mathsf{out}}\right) \mathbf{v}}_{\mathsf{Element-wise product}}$$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Sparse matrix-matrix product

Given $\mathbf{v} \in \mathbb{R}^n$, the products by $\hat{\mathsf{L}}$ can be accelerated by replacing:

$$\mathbf{SpMV}: \ \begin{pmatrix} \mathsf{L}_{\mathsf{inn}} & & \\ & \ddots & \\ & & \mathsf{L}_{\mathsf{inn}} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_{2^s} \end{pmatrix}$$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Sparse matrix-matrix product

Given $\mathbf{v} \in \mathbb{R}^n$, the products by $\hat{\mathsf{L}}$ can be accelerated by replacing:

$$\begin{array}{ccc} \text{SpMV:} & \begin{pmatrix} \mathsf{L}_{\mathsf{inn}} & & \\ & \ddots & \\ & & \mathsf{L}_{\mathsf{inn}} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_{2^s} \end{pmatrix} \text{ with SpMM: } \mathsf{L}_{\mathsf{inn}} \left(\mathbf{v}_1 \dots \mathbf{v}_{2^s} \right) \end{array}$$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Sparse matrix-matrix product

Given $\mathbf{v} \in \mathbb{R}^n$, the products by $\hat{\mathsf{L}}$ can be accelerated by replacing:

$$\begin{array}{ccc} \text{SpMV:} & \begin{pmatrix} \mathsf{L}_{\text{inn}} & & \\ & \ddots & \\ & & \mathsf{L}_{\text{inn}} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_{2^s} \end{pmatrix} \text{ with SpMM: } \mathsf{L}_{\text{inn}} \left(\mathbf{v}_1 \dots \mathbf{v}_{2^s} \right) \end{array}$$

Hence:

- $\bullet~\hat{L}\xspace$ is SpMVs can be replaced with a combination of SpMM and <code>axty</code>
- $\bullet~$ Since SpMV and SpMM are memory-bound kernels, SpMM's acceleration equals $I_{\text{SpMM}}/I_{\text{SpMV}}$
- SpMM reads L_{inn} once, whereas SpMV reads $L_{inn} 2^s$ times.

Figure: Normalized time per Jacobi-PCG iteration on 2 Intel Xeon 8160 CPUs.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

SpMM- vs SpMV-based solution of $\hat{L}\spma 's$ subsystems

Figure: Normalized time per Jacobi-PCG iteration on 2 Intel Xeon 8160 CPUs.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Summary:

• The overhead of the two (communication-free) transforms is negligible.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Summary

Summary:

- The overhead of the two (communication-free) transforms is negligible.
- Exploiting symmetries reduces the setup costs of the matrices.
- Exploiting symmetries reduces the memory footprint of the matrices.
- Exploiting symmetries reduces the time complexity of the solvers.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Summary

Summary:

- The overhead of the two (communication-free) transforms is negligible.
- Exploiting symmetries reduces the setup costs of the matrices.
- Exploiting symmetries reduces the memory footprint of the matrices.
- Exploiting symmetries reduces the time complexity of the solvers.
- SpMM naturally applies to all operators of the form $\hat{A} = \mathbb{I}_{2^s} \otimes A$.
- SpMM increases considerably the I of *all* the matrix multiplications.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Summary

Summary:

- The overhead of the two (communication-free) transforms is negligible.
- Exploiting symmetries reduces the setup costs of the matrices.
- Exploiting symmetries reduces the memory footprint of the matrices.
- Exploiting symmetries reduces the time complexity of the solvers.
- SpMM naturally applies to all operators of the form $\hat{A} = \mathbb{I}_{2^s} \otimes A$.
- SpMM increases considerably the I of *all* the matrix multiplications.

Still missing ...

Since all the subsystems are (slightly) different, so are their preconditioners, and SpMM cannot be applied with them!

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Preconditioning Poisson's equation

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Right, left and split preconditioning

Let $A \in \mathbb{R}^n$ and $x, b \in \mathbb{R}^n$. Then, given the linear system Ax = b, we can consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the left-preconditioned system is:

 $M^{-1}Ax = M^{-1}b$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Right, left and split preconditioning

Let $A \in \mathbb{R}^n$ and $x, b \in \mathbb{R}^n$. Then, given the linear system Ax = b, we can consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the left-preconditioned system is:

$$M^{-1}Ax = M^{-1}b$$

Right preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the right-preconditioned system is:

$$AM^{-1}y = b$$
, where $Mx = y$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Right, left and split preconditioning

Let $A \in \mathbb{R}^n$ and $x, b \in \mathbb{R}^n$. Then, given the linear system Ax = b, we can consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the left-preconditioned system is:

$$M^{-1}Ax = M^{-1}b$$

Right preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the right-preconditioned system is:

$$AM^{-1}y = b$$
, where $Mx = y$

Split preconditioning

Given the preconditioner $M^{-1}=M_1^{-1}M_2^{-1}\simeq A^{-1},$ the split-preconditioned system is:

$$M_1^{-1}AM_2^{-1}y = M_1^{-1}b$$
, where $M_2x = y$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Right, left and split preconditioning

Let $A \in \mathbb{R}^n$ and $x, b \in \mathbb{R}^n$. Then, given the linear system Ax = b, we can consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the left-preconditioned system is:

$$M^{-1}Ax = M^{-1}b$$

Right preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the right-preconditioned system is:

$$AM^{-1}y = b$$
, where $Mx = y$

Split preconditioning

Given the preconditioner $M^{-1}=M_1^{-1}M_2^{-1}\simeq A^{-1},$ the split-preconditioned system is:

$$M_1^{-1}AM_2^{-1}y = M_1^{-1}b$$
, where $M_2x = y$

Thus, preconditioning reduces to operations of the type: $y = M^{-1}x$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrections on meshes with symmetries

As we saw, symmetric directions allow decomposing Poisson's equation, Lx = b, into 2^s decoupled subsystems with the following structure:

$$\begin{pmatrix} \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(1)} & & \\ & \ddots & \\ & & \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(2^s)} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}}_1 \\ \vdots \\ \hat{\mathbf{x}}_{2^s} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{b}}_1 \\ \vdots \\ \hat{\mathbf{b}}_{2^s} \end{pmatrix},$$

and such that:

$$\operatorname{rank}(\mathsf{L}_{\mathsf{out}}^{(i)}) = n_{\mathsf{ifc}} \ll \operatorname{rank}(\mathsf{L}_{\mathsf{inn}}) = n$$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Low-rank corrections on meshes with symmetries

As we saw, symmetric directions allow decomposing Poisson's equation, Lx = b, into 2^s decoupled subsystems with the following structure:

$$\begin{pmatrix} \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(1)} & & \\ & \ddots & \\ & & \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(2^s)} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}}_1 \\ \vdots \\ \hat{\mathbf{x}}_{2^s} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{b}}_1 \\ \vdots \\ \hat{\mathbf{b}}_{2^s} \end{pmatrix},$$

and such that:

$$\mathrm{rank}(\mathsf{L}_{\mathsf{out}}^{(i)}) = n_{\mathsf{ifc}} \ll \mathrm{rank}(\mathsf{L}_{\mathsf{inn}}) = n$$

Low-rank corrected preconditioners

Let M_{inn} be a preconditioner for L_{inn} , *i.e.*, $M_{\text{inn}}^{-1} \simeq L_{\text{inn}}^{-1}$. Then, we can seek low-rank corrections for M_{inn} such that:

$$\hat{\mathsf{L}}^{-1} \simeq \mathbb{I}_{2^{s}} \otimes M_{\mathsf{inn}} + \begin{pmatrix} W_{k}^{(1)} \Theta_{k}^{(1)} W_{k}^{(1)^{t}} & & \\ & \ddots & \\ & & W_{k}^{(2^{s})} \Theta_{k}^{(2^{s})} W_{k}^{(2^{s})^{t}} \end{pmatrix},$$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Low-rank corrections on meshes with symmetries

As we saw, symmetric directions allow decomposing Poisson's equation, Lx = b, into 2^s decoupled subsystems with the following structure:

$$\begin{pmatrix} \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(1)} & & \\ & \ddots & \\ & & \mathsf{L}_{\mathsf{inn}} + \mathsf{L}_{\mathsf{out}}^{(2^s)} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}}_1 \\ \vdots \\ \hat{\mathbf{x}}_{2^s} \end{pmatrix} = \begin{pmatrix} \hat{\mathbf{b}}_1 \\ \vdots \\ \hat{\mathbf{b}}_{2^s} \end{pmatrix},$$

and such that:

$$\mathrm{rank}(\mathsf{L}_{\mathsf{out}}^{(i)}) = n_{\mathsf{ifc}} \ll \mathrm{rank}(\mathsf{L}_{\mathsf{inn}}) = n$$

Low-rank corrected preconditioners

Let M_{inn} be a preconditioner for L_{inn} , *i.e.*, $M_{\text{inn}}^{-1} \simeq L_{\text{inn}}^{-1}$. Then, we can seek low-rank corrections for M_{inn} such that:

$$\hat{\mathsf{L}}^{-1} \simeq \mathbb{I}_{2^s} \otimes M_{\mathsf{inn}} + \begin{pmatrix} W_k^{(1)} \Theta_k^{(1)} W_k^{(1)^t} & & \\ & \ddots & \\ & & W_k^{(2^s)} \Theta_k^{(2^s)} W_k^{(2^s)^t} \end{pmatrix},$$

As a result: lower setup costs, decoupled corrections and SpMM!

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrections for FSAI - 1

Figure: Low-rank corrected FSAI+PCG on a 100^3 mesh with s = 1 symmetries.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrections for FSAI - 2

Figure: Low-rank corrected FSAI+PCG on a 100^3 mesh with s = 2 symmetries.

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrections for FSAI - 3

Figure: Low-rank corrected FSAI+PCG on a 100^3 mesh with s = 3 symmetries.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrections for FSAI - 4

Figure: Normalised time per PCG+LRCFSAI(k) iteration on MARCONI100.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Final goal: SpMM-based AMG - 1

Figure: Single-grid smoothing.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Final goal: SpMM-based AMG - 2

Figure: Two-grid smoothing.

Figure: General V-cycle.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Final goal: SpMM-based AMG - 2

Still missing ...

AMG heavily relies on matrix multiplications and, therefore, would particularly benefit from SpMM.

As a result: lower setup costs and significant accelerations!

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrections for AMG - 1

Figure: Low-rank corrected AMG+PCG on a 100^3 mesh with s = 1 symmetries.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrections for AMG - 2

Figure: Low-rank corrected AMG+PCG on a 100^3 mesh with s = 2 symmetries.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Low-rank corrections for AMG - 3

Figure: Low-rank corrected AMG+PCG on a 100^3 mesh with s = 3 symmetries.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Meshes with symmetries

	L	-				
xx x x x x x						
xx x x x x						
x84 x x x x x						
xx x x x x x	· · · · · · · · · · · · · · · · · · ·					
xx x x x x x		мх x x x . I . I . I . I . I . I . I . I .				
xxx x x x x						
xxx x x x x						
x x x x x x x x x x x x x x x x x x x						
(a) 1 sy	mmetry	(b) 2 symmetries				

Figure: 2D meshes with varying number of symmetries.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

"Inner-interface" unknowns' ordering

Figure: "Inner-interface" ordering on 2D meshes with a varying number of symmetries. Blue: inner nodes, red: interface nodes.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Inn-Ifc discrete Laplace operator -1

Let L be the discrete Laplace operator arising from a mesh with $1\ symmetry$ and an "inner-interface" unknowns' ordering. Then:

$$\mathsf{L} = \begin{pmatrix} \bar{A} & \bar{B} \\ \bar{B}^t & \bar{C} \end{pmatrix} \in \mathbb{R}^{n \times n},$$

where $\bar{A} \in \mathbb{R}^{n_{\text{inn}} \times n_{\text{inn}}}$, $\bar{B} \in \mathbb{R}^{n_{\text{inn}} \times n_{\text{ifc}}}$ and $\bar{C} \in \mathbb{R}^{n_{\text{ifc}} \times n_{\text{ifc}}}$ account for the inner-inner, inner-interface and interface-interface couplings, respectively.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Inn-Ifc discrete Laplace operator -1

Let L be the discrete Laplace operator arising from a mesh with $1\ symmetry$ and an "inner-interface" unknowns' ordering. Then:

$$\mathsf{L} = \begin{pmatrix} \bar{A} & \bar{B} \\ \bar{B}^t & \bar{C} \end{pmatrix} \in \mathbb{R}^{n \times n},$$

where $\bar{A} \in \mathbb{R}^{n_{inn} \times n_{inn}}$, $\bar{B} \in \mathbb{R}^{n_{inn} \times n_{ifc}}$ and $\bar{C} \in \mathbb{R}^{n_{ifc} \times n_{ifc}}$ account for the inner-inner, inner-interface and interface-interface couplings, respectively. Moreover, they satisfy that:

$$\bar{A} = \begin{pmatrix} A & \\ & A \end{pmatrix}, \quad \bar{B} = \begin{pmatrix} B & \\ & B \end{pmatrix} \text{ and } \bar{C} = \begin{pmatrix} C_{\mathsf{inn}} & C_{\mathsf{out}} \\ C_{\mathsf{out}} & C_{\mathsf{inn}} \end{pmatrix}.$$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Inn-Ifc discrete Laplace operator -1

Let L be the discrete Laplace operator arising from a mesh with $1\ symmetry$ and an "inner-interface" unknowns' ordering. Then:

$$\mathsf{L} = \begin{pmatrix} \bar{A} & \bar{B} \\ \bar{B}^t & \bar{C} \end{pmatrix} \in \mathbb{R}^{n \times n},$$

where $\bar{A} \in \mathbb{R}^{n_{inn} \times n_{inn}}$, $\bar{B} \in \mathbb{R}^{n_{inn} \times n_{ifc}}$ and $\bar{C} \in \mathbb{R}^{n_{ifc} \times n_{ifc}}$ account for the inner-inner, inner-interface and interface-interface couplings, respectively. Moreover, they satisfy that:

$$\bar{A} = \begin{pmatrix} A & \\ & A \end{pmatrix}, \quad \bar{B} = \begin{pmatrix} B & \\ & B \end{pmatrix} \text{ and } \bar{C} = \begin{pmatrix} C_{\mathsf{inn}} & C_{\mathsf{out}} \\ C_{\mathsf{out}} & C_{\mathsf{inn}} \end{pmatrix}.$$

Eureka!

Given a geometry repeated n_b times, a (non-mirrored) "inner-interface" ordering leads to the same Laplacian but only satisfying $\bar{A} = \mathbb{I}_{n_b} \otimes A$.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Inn-Ifc discrete Laplace operator -1

Let L be the discrete Laplace operator arising from a mesh with $1\ symmetry$ and an "inner-interface" unknowns' ordering. Then:

$$\mathsf{L} = \begin{pmatrix} \bar{A} & \bar{B} \\ \bar{B}^t & \bar{C} \end{pmatrix} \in \mathbb{R}^{n \times n},$$

where $\bar{A} \in \mathbb{R}^{n_{inn} \times n_{inn}}$, $\bar{B} \in \mathbb{R}^{n_{inn} \times n_{ifc}}$ and $\bar{C} \in \mathbb{R}^{n_{ifc} \times n_{ifc}}$ account for the inner-inner, inner-interface and interface-interface couplings, respectively. Moreover, they satisfy that:

$$\bar{A} = \begin{pmatrix} A & \\ & A \end{pmatrix}, \quad \bar{B} = \begin{pmatrix} B & \\ & B \end{pmatrix} \text{ and } \bar{C} = \begin{pmatrix} C_{\mathsf{inn}} & C_{\mathsf{out}} \\ C_{\mathsf{out}} & C_{\mathsf{inn}} \end{pmatrix}.$$

Eureka!

Given a geometry repeated n_b times, a (non-mirrored) "inner-interface" ordering leads to the same Laplacian but only satisfying $\bar{A} = \mathbb{I}_{n_b} \otimes A$.

Additionally, the "inner-interface" ordering works with symmetric domains with **non-symmetric boundary conditions**!

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Overview of the AMGR framework – 1

We had that n_b repeated geometries (with s symmetries, $n_b = 2^s$) lead to:

$$\mathsf{L} = \begin{pmatrix} \bar{A} & \bar{B} \\ \bar{B}^t & \bar{C} \end{pmatrix}, \text{ where } \bar{A} = \begin{pmatrix} A & & \\ & \ddots & \\ & & A \end{pmatrix}.$$

Then, we will consider a two-level AMG with the following fine-level smoother:

$$M_{\rm L} = \begin{pmatrix} \mathbb{I}_{n_b} \otimes M_A & \\ & M_{\bar{C}} \end{pmatrix},$$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Overview of the AMGR framework – 1

We had that n_b repeated geometries (with s symmetries, $n_b = 2^s$) lead to:

$$\mathsf{L} = \begin{pmatrix} \bar{A} & \bar{B} \\ \bar{B}^t & \bar{C} \end{pmatrix}, \text{ where } \bar{A} = \begin{pmatrix} A & & \\ & \ddots & \\ & & A \end{pmatrix}.$$

Then, we will consider a two-level AMG with the following fine-level smoother:

$$M_{\rm L} = \begin{pmatrix} \mathbb{I}_{n_b} \otimes M_A & \\ & M_{\bar{C}} \end{pmatrix},$$

the following prolongation:

$$P = \begin{pmatrix} W\\ \mathbb{I}_{n_{\text{ifc}}} \end{pmatrix} \in \mathbb{R}^{n \times n_{\text{ifc}}},$$

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks 000

Overview of the AMGR framework -1

We had that n_b repeated geometries (with s symmetries, $n_b = 2^s$) lead to:

$$\mathsf{L} = \begin{pmatrix} \bar{A} & \bar{B} \\ \bar{B}^t & \bar{C} \end{pmatrix}, \text{ where } \bar{A} = \begin{pmatrix} A & & \\ & \ddots & \\ & & A \end{pmatrix}.$$

Then, we will consider a two-level AMG with the following fine-level smoother:

$$M_{\rm L} = \begin{pmatrix} \mathbb{I}_{n_b} \otimes M_A & \\ & M_{\bar{C}} \end{pmatrix},$$

the following prolongation:

$$P = \begin{pmatrix} W\\ \mathbb{I}_{n_{\text{ifc}}} \end{pmatrix} \in \mathbb{R}^{n \times n_{\text{ifc}}},$$

and the following coarse-level operator:

$$\mathsf{L}_c = P^T \mathsf{L} P \in \mathbb{R}^{n_{\mathsf{ifc}} \times n_{\mathsf{ifc}}}.$$

Solving Poisson's equation

Preconditioning Poisson's equation ○○○○○○○○○○○○○○○○○○ Concluding remarks

Overview of the AMGR framework - 2

In summary, our two-level AMGR will consist of:

$$M_{\mathsf{L}} = \begin{pmatrix} \mathbb{I}_{n_b} \otimes M_A & \\ & M_{\bar{C}} \end{pmatrix}, \quad P = \begin{pmatrix} W \\ \mathbb{I}_{n_{\text{ifc}}} \end{pmatrix}, \quad \mathsf{L}_c = P^T \mathsf{L} P, \quad \text{and} \quad M_{\mathsf{L}_c} = \mathsf{AMG}_{\mathsf{L}_c}.$$

888355555555 <mark>55</mark> 5	33	: 20 :	t = te i	土土년맨
				1.7.646
HI-I - I - I -	•	•	•	1 + 1+66
				1 - FIR
Walah a hia <mark>ha</mark> a			· .	1.1.1000
				1 1 10
+1-1 - + +				+ - + 1+1
		L .	L	1.1100
100 C C C C C C C C C				1.1.000
11.1 - 1 1 1		L		4 - 1.103
				1 1 10
mm - 1 - 1 - 1 - 1 - 1		•		1.1.100
لـــــــــــــــــــــــــــــــــــــ				1 1 10
				1 1 10
4				1,2,1200
				1 1 10
				1 111
				1.1.00
				1.1.100
				+ +- 1+1
				1 1 10
*** • • • • •				1.1.100
				1 - 1-11
				1 + 1+00

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks ●○○

Concluding remarks

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks ○●○

Conclusions

Summary:

• AMGR applies to both **mirrored and repeated geometries** regardless of the boundary conditions.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks O●○

Conclusions

Summary:

- AMGR applies to both **mirrored and repeated geometries** regardless of the boundary conditions.
- AMGR preconditioner does not require decoupling Poisson's equation.
- Despite its aggressive coarsening, AMGR converges as the standard AMG.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks O●○

Conclusions

Summary:

- AMGR applies to both **mirrored and repeated geometries** regardless of the boundary conditions.
- AMGR preconditioner does not require decoupling Poisson's equation.
- Despite its aggressive coarsening, AMGR converges as the standard AMG.
- AMGR reduces the setup costs of AMG.
- AMGR reduces the memory footprint of AMG.
- AMGR increases the arithmetic intensity of AMG.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks O●○

Conclusions

Summary:

- AMGR applies to both **mirrored and repeated geometries** regardless of the boundary conditions.
- AMGR preconditioner does not require decoupling Poisson's equation.
- Despite its aggressive coarsening, AMGR converges as the standard AMG.
- AMGR reduces the setup costs of AMG.
- AMGR reduces the memory footprint of AMG.
- AMGR increases the arithmetic intensity of AMG.

Ongoing work:

- Test AMGR on real CFD and structural problems.
- Test SpMM in simulations presenting symmetries or repeated geometries.

Solving Poisson's equation

Preconditioning Poisson's equation

Concluding remarks

Thanks for your attention!