An AMG reduction framework for Poisson's equation in CFD simulations

Àdel Alsalti-Baldellou ${ }^{1,2}$ Carlo Janna ${ }^{3}$ Xavier Álvarez-Farré ${ }^{1}$ F. Xavier Trias ${ }^{1}$
${ }^{1}$ Heat and Mass Transfer Technological Center, Technical University of Catalonia
${ }^{2}$ Termo Fluids SL, http://www.termofluids.com/
${ }^{3}$ Department of Civil, Environmental and Architectural Engineering, University of Padova

May 11th 2023

Index

(1) Context of the work

- Targetted applications
- Poisson's equation in CFD
(2) Solving Poisson's equation
- Block diagonal Laplace operator
- Iterative solvers exploiting symmetries
(3) Preconditioning Poisson's equation
- SpMM-based FSAI
- SpMM-based AMG

4 Concluding remarks

Context of the work

Figure: Simulation of flow around a square cylinder ${ }^{1}$ and Rayleigh-Bénard convection ${ }^{2}$.

[^0]
CFD applications - 2

Figure: Simulation of turbulent flow over the DrivAer fastback vehicle model ${ }^{3}$.

[^1]
CFD applications - 3

Figure: Simulation of brazed and expanded tube-fin heat exchangers ${ }^{4}$.

[^2]CFD applications - 4

Figure: Simulation of wind plant and array of "buildings" (from the internet).

Fractional Step Method (FSM)

(1) Evaluate the auxiliar vector field $\mathbf{r}\left(\mathbf{v}^{n}\right):=-(\mathbf{v} \cdot \nabla) \mathbf{v}+\nu \Delta \mathbf{v}$
(2) Evaluate the predictor velocity $\mathbf{v}^{p}:=\mathbf{v}^{n}+\Delta t\left(\frac{3}{2} \mathbf{r}\left(\mathbf{v}^{n}\right)-\frac{1}{2} \mathbf{r}\left(\mathbf{v}^{n-1}\right)\right)$
(3) Obtain the pressure field by solving a Poisson equation:

$$
\nabla \cdot\left(\frac{1}{\rho} \nabla p^{n+1}\right)=\frac{1}{\Delta t} \nabla \cdot \mathbf{v}^{p}
$$

(9) Obtain the new divergence-free velocity $\mathbf{v}^{n+1}=\mathbf{v}^{p}-\nabla p^{n+1}$

Fractional Step Method (FSM)

(1) Evaluate the auxiliar vector field $\mathbf{r}\left(\mathbf{v}^{n}\right):=-(\mathbf{v} \cdot \nabla) \mathbf{v}+\nu \Delta \mathbf{v}$
(2) Evaluate the predictor velocity $\mathbf{v}^{p}:=\mathbf{v}^{n}+\Delta t\left(\frac{3}{2} \mathbf{r}\left(\mathbf{v}^{n}\right)-\frac{1}{2} \mathbf{r}\left(\mathbf{v}^{n-1}\right)\right)$
(3) Obtain the pressure field by solving a Poisson equation:

$$
\nabla \cdot\left(\frac{1}{\rho} \nabla p^{n+1}\right)=\frac{1}{\Delta t} \nabla \cdot \mathbf{v}^{p}
$$

(9) Obtain the new divergence-free velocity $\mathbf{v}^{n+1}=\mathbf{v}^{p}-\nabla p^{n+1}$

Poisson's equation for incompressible single-phase flows

- Continuous:

$$
\Delta p=\frac{\rho}{\Delta t} \nabla \cdot \mathbf{v}^{p}
$$

Fractional Step Method (FSM)

(1) Evaluate the auxiliar vector field $\mathbf{r}\left(\mathbf{v}^{n}\right):=-(\mathbf{v} \cdot \nabla) \mathbf{v}+\nu \Delta \mathbf{v}$
(2) Evaluate the predictor velocity $\mathbf{v}^{p}:=\mathbf{v}^{n}+\Delta t\left(\frac{3}{2} \mathbf{r}\left(\mathbf{v}^{n}\right)-\frac{1}{2} \mathbf{r}\left(\mathbf{v}^{n-1}\right)\right)$
(3) Obtain the pressure field by solving a Poisson equation:

$$
\nabla \cdot\left(\frac{1}{\rho} \nabla p^{n+1}\right)=\frac{1}{\Delta t} \nabla \cdot \mathbf{v}^{p}
$$

(9) Obtain the new divergence-free velocity $\mathbf{v}^{n+1}=\mathbf{v}^{p}-\nabla p^{n+1}$

Poisson's equation for incompressible single-phase flows

- Continuous:

$$
\Delta p=\frac{\rho}{\Delta t} \nabla \cdot \mathbf{v}^{p}
$$

- Discrete:

$$
\mathrm{L} p_{h}=\frac{\rho}{\Delta t} \mathrm{M} v_{h}^{p}
$$

Solving Poisson's equation

Meshes with symmetries

(a) 1 symmetry

(b) 2 symmetries

Figure: 2D meshes with varying number of symmetries.

"Mirrored" unknowns' ordering

(a) 1 symmetry

(b) 2 symmetries

Figure: "Mirrored" ordering on 2D meshes with a varying no. of symmetries.

Discrete Laplace operator and mesh symmetries
Let L be the discrete Laplace operator arising from a mesh with s symmetries, and let us define the following change of basis:

$$
\mathrm{P}=\frac{1}{\sqrt{2^{s}}}\left[\bigotimes_{i=1}^{p}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\right] \otimes \mathbb{I}_{n / 2^{s}} \in \mathbb{R}^{n \times n}
$$

Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries, and let us define the following change of basis:

$$
\mathrm{P}=\frac{1}{\sqrt{2^{s}}}\left[\bigotimes_{i=1}^{p}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\right] \otimes \mathbb{I}_{n / 2^{s}} \in \mathbb{R}^{n \times n}
$$

Then, thanks to the "mirrored" ordering, P transforms L :

$$
\mathrm{L}=\left(\begin{array}{ccc}
\mathrm{L}_{1-1} & \cdots & \mathrm{~L}_{1-2^{s}} \\
\vdots & \ddots & \vdots \\
\mathrm{~L}_{2^{s}-1} & \cdots & \mathrm{~L}_{2^{s}-2^{s}}
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

into 2^{s} decoupled subsystems ${ }^{5}$:

$$
\hat{\mathrm{L}}=\left(\begin{array}{ccc}
\hat{\mathrm{L}}_{1} & & \\
& \ddots & \\
& & \hat{\mathrm{~L}}_{2^{s}}
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

[^3]
Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries, and let us define the following change of basis:

$$
\mathrm{P}=\frac{1}{\sqrt{2^{s}}}\left[\bigotimes_{i=1}^{p}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\right] \otimes \mathbb{I}_{n / 2^{s}} \in \mathbb{R}^{n \times n}
$$

(a) L
(b) $\hat{L}=P L P^{-1}$

Figure: 3D structured mesh exploiting $s=1$ symmetries.

Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries, and let us define the following change of basis:

$$
\mathrm{P}=\frac{1}{\sqrt{2^{s}}}\left[\bigotimes_{i=1}^{p}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\right] \otimes \mathbb{I}_{n / 2^{s}} \in \mathbb{R}^{n \times n}
$$

Figure: 3D structured mesh exploiting $s=2$ symmetries.

Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries, and let us define the following change of basis:

$$
\mathrm{P}=\frac{1}{\sqrt{2^{s}}}\left[\bigotimes_{i=1}^{p}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\right] \otimes \mathbb{I}_{n / 2^{s}} \in \mathbb{R}^{n \times n}
$$

Figure: 3D structured mesh exploiting $s=3$ symmetries.

Resulting algorithm

Algorithm Poisson solver exploiting s mesh symmetries

(1) Transform forward the RHS: $\hat{b}=\mathrm{Pb}$
(2) Decoupled solution of the 2^{s} subsystems: $\hat{L} \hat{x}=\hat{b}$
(3) Transform backward the solution: $x=\mathrm{P}^{-1} \hat{x}$
where:

$$
\mathrm{P}=\frac{1}{\sqrt{2^{s}}}\left[\bigotimes_{i=1}^{p}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\right] \otimes \mathbb{I}_{n / 2^{s}}, \quad \mathrm{P}^{-1}=\mathrm{P}
$$

and Step 2 corresponds to inverting:

$$
\left(\begin{array}{ccc}
\hat{\mathbf{L}}_{1} & & \\
& \ddots & \\
& & \hat{\mathbf{L}}_{2^{s}}
\end{array}\right)\left(\begin{array}{c}
\hat{\mathbf{x}}_{1} \\
\vdots \\
\hat{\mathbf{x}}_{2^{s}}
\end{array}\right)=\left(\begin{array}{c}
\hat{\mathbf{b}}_{1} \\
\vdots \\
\hat{\mathbf{b}}_{2^{s}}
\end{array}\right)
$$

Iterative solvers and mesh symmetries

The subsystems' smaller size has multiple immediate advantages. Namely:

- A reduction in Poisson solvers' iteration count
- A reduction in Poisson solvers' memory footprint
- An increase in Poisson solvers' arithmetic intensity

Iterative solvers and mesh symmetries

The subsystems' smaller size has multiple immediate advantages. Namely:

- A reduction in Poisson solvers' iteration count
- A reduction in Poisson solvers' memory footprint
- An increase in Poisson solvers' arithmetic intensity

In general, \hat{L} can be split as:

$$
\hat{\mathrm{L}}=\cdots=\left(\begin{array}{ccc}
\mathrm{L}_{\text {inn }} & & \\
& \ddots & \\
& & \mathrm{L}_{\text {inn }}
\end{array}\right)+\left(\begin{array}{ccc}
\mathrm{L}_{\text {out }}^{(1)} & & \\
& \ddots & \\
& & \mathrm{L}_{\text {out }}^{\left(2^{s}\right)}
\end{array}\right)
$$

Iterative solvers and mesh symmetries

The subsystems' smaller size has multiple immediate advantages. Namely:

- A reduction in Poisson solvers' iteration count
- A reduction in Poisson solvers' memory footprint
- An increase in Poisson solvers' arithmetic intensity

In general, \hat{L} can be split as:

$$
\hat{\mathrm{L}}=\cdots=\left(\begin{array}{ccc}
\mathrm{L}_{\text {inn }} & & \\
& \ddots & \\
& & \mathrm{L}_{\text {inn }}
\end{array}\right)+\left(\begin{array}{ccc}
\mathrm{L}_{\text {out }}^{(1)} & & \\
& \ddots & \\
& & \mathrm{L}_{\text {out }}^{\left(2^{s}\right)}
\end{array}\right)
$$

In particular, compact stencils only coupling adjacent nodes result in:

$$
\hat{\mathbf{L}} \mathbf{v}=\underbrace{\left(\mathbb{I}_{2^{s}} \otimes \mathrm{~L}_{\text {inn }}\right) \mathbf{v}}_{\begin{array}{c}
\text { Sparse matrix-matrix } \\
\text { product }(\text { SpMM) }
\end{array}}+\underbrace{\operatorname{diag}\left(\mathbf{l}_{\text {out }}\right) \mathbf{v}}_{\begin{array}{c}
\text { Element-wise product } \\
\text { of vectors (axty) }
\end{array}}
$$

Sparse matrix-matrix product

Given $\mathbf{v} \in \mathbb{R}^{n}$, the products by \hat{L} can be accelerated by replacing:

$$
\operatorname{SpMV}:\left(\begin{array}{ccc}
\mathrm{L}_{\mathrm{inn}} & & \\
& \ddots & \\
& & \mathrm{~L}_{\mathrm{inn}}
\end{array}\right)\left(\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{2^{s}}
\end{array}\right)
$$

Sparse matrix-matrix product

Given $\mathbf{v} \in \mathbb{R}^{n}$, the products by \hat{L} can be accelerated by replacing:

$$
\text { SpMV: }\left(\begin{array}{ccc}
\mathrm{L}_{\text {inn }} & & \\
& \ddots & \\
& & \mathrm{L}_{\text {inn }}
\end{array}\right)\left(\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{2^{s}}
\end{array}\right) \text { with SpMM: } \mathrm{L}_{\text {inn }}\left(\mathbf{v}_{1} \ldots \mathbf{v}_{2^{s}}\right)
$$

Sparse matrix-matrix product

Given $\mathbf{v} \in \mathbb{R}^{n}$, the products by \hat{L} can be accelerated by replacing:

$$
\text { SpMV: }\left(\begin{array}{ccc}
\mathrm{L}_{\text {inn }} & & \\
& \ddots & \\
& & \mathrm{L}_{\text {inn }}
\end{array}\right)\left(\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{2^{s}}
\end{array}\right) \text { with SpMM: } \mathrm{L}_{\text {inn }}\left(\mathbf{v}_{1} \ldots \mathbf{v}_{2^{s}}\right)
$$

Hence:

- L̂'s SpMVs can be replaced with a combination of SpMM and axty
- Since SpMV and SpMM are memory-bound kernels, SpMM's acceleration equals $\mathrm{I}_{\text {spmm }} / \mathrm{I}_{\mathrm{sppuv}}$
- SpMM reads $\mathrm{L}_{\text {inn }}$ once, whereas SpMV reads $\mathrm{L}_{\text {inn }} 2^{s}$ times.

SpMM- vs SpMV-based solution of L̂'s subsystems

Figure: Normalized time per Jacobi-PCG iteration on 2 Intel Xeon 8160 CPUs.

SpMM- vs SpMV-based solution of L̂'s subsystems

Figure: Normalized time per Jacobi-PCG iteration on 2 Intel Xeon 8160 CPUs.

Summary

Summary:

- The overhead of the two (communication-free) transforms is negligible.

Summary:

- The overhead of the two (communication-free) transforms is negligible.
- Exploiting symmetries reduces the setup costs of the matrices.
- Exploiting symmetries reduces the memory footprint of the matrices.
- Exploiting symmetries reduces the time complexity of the solvers.

Summary:

- The overhead of the two (communication-free) transforms is negligible.
- Exploiting symmetries reduces the setup costs of the matrices.
- Exploiting symmetries reduces the memory footprint of the matrices.
- Exploiting symmetries reduces the time complexity of the solvers.
- SpMM naturally applies to all operators of the form $\hat{A}=\mathbb{I}_{2} \otimes \mathrm{~A}$.
- SpMM increases considerably the I of all the matrix multiplications.

Summary

Summary:

- The overhead of the two (communication-free) transforms is negligible.
- Exploiting symmetries reduces the setup costs of the matrices.
- Exploiting symmetries reduces the memory footprint of the matrices.
- Exploiting symmetries reduces the time complexity of the solvers.
- SpMM naturally applies to all operators of the form $\hat{A}=\mathbb{I}_{2} \otimes \mathrm{~A}$.
- SpMM increases considerably the I of all the matrix multiplications.

Still missing...

Since all the subsystems are (slightly) different, so are their preconditioners, and SpMM cannot be applied with them!

Preconditioning Poisson's equation

Right, left and split preconditioning

Let $A \in \mathbb{R}^{n}$ and $x, b \in \mathbb{R}^{n}$. Then, given the linear system $A x=b$, we can consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the left-preconditioned system is:

$$
M^{-1} A x=M^{-1} b
$$

Right, left and split preconditioning

Let $A \in \mathbb{R}^{n}$ and $x, b \in \mathbb{R}^{n}$. Then, given the linear system $A x=b$, we can consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the left-preconditioned system is:

$$
M^{-1} A x=M^{-1} b
$$

Right preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the right-preconditioned system is:

$$
A M^{-1} y=b, \text { where } M x=y
$$

Right, left and split preconditioning

Let $A \in \mathbb{R}^{n}$ and $x, b \in \mathbb{R}^{n}$. Then, given the linear system $A x=b$, we can consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the left-preconditioned system is:

$$
M^{-1} A x=M^{-1} b
$$

Right preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the right-preconditioned system is:

$$
A M^{-1} y=b, \text { where } M x=y
$$

Split preconditioning

Given the preconditioner $M^{-1}=M_{1}^{-1} M_{2}^{-1} \simeq A^{-1}$, the split-preconditioned system is:

$$
M_{1}^{-1} A M_{2}^{-1} y=M_{1}^{-1} b, \text { where } M_{2} x=y
$$

Right, left and split preconditioning

Let $A \in \mathbb{R}^{n}$ and $x, b \in \mathbb{R}^{n}$. Then, given the linear system $A x=b$, we can consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the left-preconditioned system is:

$$
M^{-1} A x=M^{-1} b
$$

Right preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the right-preconditioned system is:

$$
A M^{-1} y=b, \text { where } M x=y
$$

Split preconditioning

Given the preconditioner $M^{-1}=M_{1}^{-1} M_{2}^{-1} \simeq A^{-1}$, the split-preconditioned system is:

$$
M_{1}^{-1} A M_{2}^{-1} y=M_{1}^{-1} b, \text { where } M_{2} x=y
$$

Thus, preconditioning reduces to operations of the type: $y=M^{-1} x$

Low-rank corrections on meshes with symmetries
As we saw, symmetric directions allow decomposing Poisson's equation, $\mathrm{L} x=b$, into 2^{s} decoupled subsystems with the following structure:

$$
\left(\begin{array}{ccc}
\mathrm{L}_{\text {inn }}+\mathrm{L}_{\mathrm{out}}^{(1)} & & \\
& \ddots & \\
& & \mathrm{L}_{\text {inn }}+\mathrm{L}_{\mathrm{out}}^{\left(2^{s}\right)}
\end{array}\right)\left(\begin{array}{c}
\hat{\mathbf{x}}_{1} \\
\vdots \\
\hat{\mathbf{x}}_{2^{s}}
\end{array}\right)=\left(\begin{array}{c}
\hat{\mathbf{b}}_{1} \\
\vdots \\
\hat{\mathbf{b}}_{2^{s}}
\end{array}\right)
$$

and such that:

$$
\operatorname{rank}\left(\mathrm{L}_{\text {out }}^{(i)}\right)=n_{\text {ifc }} \ll \operatorname{rank}\left(\mathrm{L}_{\text {inn }}\right)=n
$$

Low-rank corrections on meshes with symmetries
As we saw, symmetric directions allow decomposing Poisson's equation, $\mathrm{L} x=b$, into 2^{s} decoupled subsystems with the following structure:

$$
\left(\begin{array}{ccc}
\mathrm{L}_{\text {inn }}+\mathrm{L}_{\mathrm{out}}^{(1)} & & \\
& \ddots & \\
& & \mathrm{L}_{\text {inn }}+\mathrm{L}_{\mathrm{out}}^{\left(2^{s}\right)}
\end{array}\right)\left(\begin{array}{c}
\hat{\mathbf{x}}_{1} \\
\vdots \\
\hat{\mathbf{x}}_{2^{s}}
\end{array}\right)=\left(\begin{array}{c}
\hat{\mathbf{b}}_{1} \\
\vdots \\
\hat{\mathbf{b}}_{2^{s}}
\end{array}\right)
$$

and such that:

$$
\operatorname{rank}\left(\mathrm{L}_{\text {out }}^{(i)}\right)=n_{\text {ifc }} \ll \operatorname{rank}\left(\mathrm{L}_{\text {inn }}\right)=n
$$

Low-rank corrected preconditioners

Let $M_{\text {inn }}$ be a preconditioner for $\mathrm{L}_{\mathrm{inn}}$, i.e., $M_{\mathrm{inn}}^{-1} \simeq \mathrm{~L}_{\mathrm{inn}}^{-1}$. Then, we can seek low-rank corrections for $M_{\text {inn }}$ such that:

$$
\hat{\mathrm{L}}^{-1} \simeq \mathbb{I}_{2^{s}} \otimes M_{\mathrm{inn}}+\left(\begin{array}{ccc}
W_{k}^{(1)} \Theta_{k}^{(1)} W_{k}^{(1)^{t}} & & \\
& \ddots & \\
& & W_{k}^{\left(2^{s}\right)} \Theta_{k}^{\left(2^{s}\right)} W_{k}^{\left(2^{s}\right)^{t}}
\end{array}\right)
$$

Low-rank corrections on meshes with symmetries
As we saw, symmetric directions allow decomposing Poisson's equation, $\mathrm{L} x=b$, into 2^{s} decoupled subsystems with the following structure:

$$
\left(\begin{array}{ccc}
\mathrm{L}_{\text {inn }}+\mathrm{L}_{\mathrm{out}}^{(1)} & & \\
& \ddots & \\
& & \mathrm{L}_{\text {inn }}+\mathrm{L}_{\mathrm{out}}^{\left(2^{s}\right)}
\end{array}\right)\left(\begin{array}{c}
\hat{\mathbf{x}}_{1} \\
\vdots \\
\hat{\mathbf{x}}_{2^{s}}
\end{array}\right)=\left(\begin{array}{c}
\hat{\mathbf{b}}_{1} \\
\vdots \\
\hat{\mathbf{b}}_{2^{s}}
\end{array}\right)
$$

and such that:

$$
\operatorname{rank}\left(\mathrm{L}_{\text {out }}^{(i)}\right)=n_{\text {ifc }} \ll \operatorname{rank}\left(\mathrm{L}_{\text {inn }}\right)=n
$$

Low-rank corrected preconditioners

Let $M_{\text {inn }}$ be a preconditioner for $\mathrm{L}_{\mathrm{inn}}$, i.e., $M_{\mathrm{inn}}^{-1} \simeq \mathrm{~L}_{\mathrm{inn}}^{-1}$. Then, we can seek low-rank corrections for $M_{\text {inn }}$ such that:

$$
\hat{\mathrm{L}}^{-1} \simeq \mathbb{I}_{2^{s}} \otimes M_{\mathrm{inn}}+\left(\begin{array}{ccc}
W_{k}^{(1)} \Theta_{k}^{(1)} W_{k}^{(1)^{t}} & & \\
& \ddots & \\
& & W_{k}^{\left(2^{s}\right)} \Theta_{k}^{\left(2^{s}\right)} W_{k}^{\left(2^{s}\right)^{t}}
\end{array}\right)
$$

As a result: lower setup costs, decoupled corrections and SpMM!

Low-rank corrections for FSAI - 1

Figure: Low-rank corrected FSAI+PCG on a 100^{3} mesh with $s=1$ symmetries.

Low-rank corrections for FSAI - 2

Figure: Low-rank corrected FSAI+PCG on a 100^{3} mesh with $s=2$ symmetries.

Low-rank corrections for FSAI - 3

Figure: Low-rank corrected FSAI+PCG on a 100^{3} mesh with $s=3$ symmetries.

Low-rank corrections for FSAI - 4

Figure: Normalised time per PCG+LRCFSAI (k) iteration on MARCONI 100.

Final goal: SpMM-based AMG - 1

Figure: Eigencomponents' reduction.

Figure: Single-grid smoothing.

0000

Final goal: SpMM-based AMG - 2

Figure: Two-grid smoothing.

Figure: General V-cycle.

Final goal: SpMM-based AMG - 2

Figure: Two-grid smoothing.

Figure: General V-cycle.

Still missing...

AMG heavily relies on matrix multiplications and, therefore, would particularly benefit from SpMM.

As a result: lower setup costs and significant accelerations!

Low-rank corrections for AMG - 1

Figure: Low-rank corrected AMG+PCG on a 100^{3} mesh with $s=1$ symmetries.

Low-rank corrections for AMG - 2

Figure: Low-rank corrected AMG+PCG on a 100^{3} mesh with $s=2$ symmetries.

Low-rank corrections for AMG - 3

Figure: Low-rank corrected AMG+PCG on a 100^{3} mesh with $s=3$ symmetries.

Meshes with symmetries

(a) 1 symmetry

(b) 2 symmetries

Figure: 2D meshes with varying number of symmetries.
"Inner-interface" unknowns' ordering

(a) 1 symmetry

(b) 2 symmetries

Figure: "Inner-interface" ordering on 2D meshes with a varying number of symmetries. Blue: inner nodes, red: interface nodes.

Inn-Ifc discrete Laplace operator - 1

Let L be the discrete Laplace operator arising from a mesh with 1 symmetry and an "inner-interface" unknowns' ordering. Then:

$$
\mathrm{L}=\left(\begin{array}{cc}
\bar{A} & \bar{B} \\
\bar{B}^{t} & \bar{C}
\end{array}\right) \in \mathbb{R}^{n \times n},
$$

where $\bar{A} \in \mathbb{R}^{n_{\text {inn }} \times n_{\text {inn }}}, \bar{B} \in \mathbb{R}^{n_{\text {inn }} \times n_{\text {ifc }}}$ and $\bar{C} \in \mathbb{R}^{n_{\text {ifc }} \times n_{\text {ifc }}}$ account for the inner-inner, inner-interface and interface-interface couplings, respectively.

Inn-Ifc discrete Laplace operator - 1

Let L be the discrete Laplace operator arising from a mesh with 1 symmetry and an "inner-interface" unknowns' ordering. Then:

$$
\mathrm{L}=\left(\begin{array}{ll}
\bar{A} & \bar{B} \\
\bar{B}^{t} & \bar{C}
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

where $\bar{A} \in \mathbb{R}^{n_{\text {inn }} \times n_{\text {inn }}}, \bar{B} \in \mathbb{R}^{n_{\text {inn }} \times n_{\text {ifc }}}$ and $\bar{C} \in \mathbb{R}^{n_{\text {ifc }} \times n_{\text {ifc }}}$ account for the inner-inner, inner-interface and interface-interface couplings, respectively. Moreover, they satisfy that:

$$
\bar{A}=\left(\begin{array}{ll}
A & \\
& A
\end{array}\right), \quad \bar{B}=\left(\begin{array}{cc}
B & \\
& B
\end{array}\right) \text { and } \bar{C}=\left(\begin{array}{ll}
C_{\mathrm{inn}} & C_{\mathrm{out}} \\
C_{\mathrm{out}} & C_{\mathrm{inn}}
\end{array}\right) .
$$

Inn-Ifc discrete Laplace operator - 1

Let L be the discrete Laplace operator arising from a mesh with $\mathbf{1}$ symmetry and an "inner-interface" unknowns' ordering. Then:

$$
\mathrm{L}=\left(\begin{array}{ll}
\bar{A} & \bar{B} \\
\bar{B}^{t} & \bar{C}
\end{array}\right) \in \mathbb{R}^{n \times n},
$$

where $\bar{A} \in \mathbb{R}^{n_{\text {inn }} \times n_{\text {inn }}}, \bar{B} \in \mathbb{R}^{n_{\text {inn }} \times n_{\text {ifc }}}$ and $\bar{C} \in \mathbb{R}^{n_{\text {ifc }} \times n_{\text {ifc }}}$ account for the inner-inner, inner-interface and interface-interface couplings, respectively. Moreover, they satisfy that:

$$
\bar{A}=\left(\begin{array}{ll}
A & \\
& A
\end{array}\right), \quad \bar{B}=\left(\begin{array}{ll}
B & \\
& B
\end{array}\right) \text { and } \bar{C}=\left(\begin{array}{ll}
C_{\text {inn }} & C_{\text {out }} \\
C_{\text {out }} & C_{\text {inn }}
\end{array}\right) .
$$

Eureka!

Given a geometry repeated n_{b} times, a (non-mirrored) "inner-interface" ordering leads to the same Laplacian but only satisfying $\bar{A}=\mathbb{I}_{n_{b}} \otimes A$.

Let L be the discrete Laplace operator arising from a mesh with $\mathbf{1}$ symmetry and an "inner-interface" unknowns' ordering. Then:

$$
\mathrm{L}=\left(\begin{array}{ll}
\bar{A} & \bar{B} \\
\bar{B}^{t} & \bar{C}
\end{array}\right) \in \mathbb{R}^{n \times n},
$$

where $\bar{A} \in \mathbb{R}^{n_{\text {inn }} \times n_{\text {inn }}}, \bar{B} \in \mathbb{R}^{n_{\text {inn }} \times n_{\text {ifc }}}$ and $\bar{C} \in \mathbb{R}^{n_{\text {ifc }} \times n_{\text {ifc }}}$ account for the inner-inner, inner-interface and interface-interface couplings, respectively. Moreover, they satisfy that:

$$
\bar{A}=\left(\begin{array}{ll}
A & \\
& A
\end{array}\right), \quad \bar{B}=\left(\begin{array}{ll}
B & \\
& B
\end{array}\right) \text { and } \bar{C}=\left(\begin{array}{ll}
C_{\text {inn }} & C_{\text {out }} \\
C_{\text {out }} & C_{\text {inn }}
\end{array}\right) .
$$

Eureka!

Given a geometry repeated n_{b} times, a (non-mirrored) "inner-interface" ordering leads to the same Laplacian but only satisfying $\bar{A}=\mathbb{I}_{n_{b}} \otimes A$.

Additionally, the "inner-interface" ordering works with symmetric domains with non-symmetric boundary conditions!

Overview of the AMGR framework - 1

We had that n_{b} repeated geometries (with s symmetries, $n_{b}=2^{s}$) lead to:

$$
\mathrm{L}=\left(\begin{array}{cc}
\bar{A} & \bar{B} \\
\bar{B}^{t} & \bar{C}
\end{array}\right), \text { where } \bar{A}=\left(\begin{array}{ccc}
A & & \\
& \ddots & \\
& & A
\end{array}\right)
$$

Then, we will consider a two-level AMG with the following fine-level smoother:

$$
M_{\mathrm{L}}=\left(\begin{array}{cc}
\mathbb{I}_{n_{b}} \otimes M_{A} & \\
& M_{\bar{C}}
\end{array}\right)
$$

Overview of the AMGR framework - 1

We had that n_{b} repeated geometries (with s symmetries, $n_{b}=2^{s}$) lead to:

$$
\mathrm{L}=\left(\begin{array}{cc}
\bar{A} & \bar{B} \\
\bar{B}^{t} & \bar{C}
\end{array}\right), \text { where } \bar{A}=\left(\begin{array}{ccc}
A & & \\
& \ddots & \\
& & A
\end{array}\right)
$$

Then, we will consider a two-level AMG with the following fine-level smoother:

$$
M_{\mathrm{L}}=\left(\begin{array}{cc}
\mathbb{I}_{n_{b}} \otimes M_{A} & \\
& M_{\bar{C}}
\end{array}\right)
$$

the following prolongation:

$$
P=\binom{W}{\mathbb{I}_{n_{\mathrm{ifc}}}} \in \mathbb{R}^{n \times n_{\mathrm{ifc}}}
$$

Overview of the AMGR framework - 1

We had that n_{b} repeated geometries (with s symmetries, $n_{b}=2^{s}$) lead to:

$$
\mathrm{L}=\left(\begin{array}{cc}
\bar{A} & \bar{B} \\
\bar{B}^{t} & \bar{C}
\end{array}\right), \text { where } \bar{A}=\left(\begin{array}{ccc}
A & & \\
& \ddots & \\
& & A
\end{array}\right)
$$

Then, we will consider a two-level AMG with the following fine-level smoother:

$$
M_{\mathrm{L}}=\left(\begin{array}{cc}
\mathbb{I}_{n_{b}} \otimes M_{A} & \\
& M_{\bar{C}}
\end{array}\right)
$$

the following prolongation:

$$
P=\binom{W}{\mathbb{I}_{n_{\mathrm{ifc}}}} \in \mathbb{R}^{n \times n_{\mathrm{ifc}}}
$$

and the following coarse-level operator:

$$
\mathrm{L}_{c}=P^{T} \mathrm{~L} P \in \mathbb{R}^{n_{\mathrm{ifc}} \times n_{\mathrm{ifc}}} .
$$

Overview of the AMGR framework - 2

In summary, our two-level AMGR will consist of:

$$
M_{\mathrm{L}}=\left(\begin{array}{cc}
\mathbb{I}_{n_{b}} \otimes M_{A} & \\
& M_{\bar{C}}
\end{array}\right), \quad P=\binom{W}{\mathbb{I}_{n_{\mathrm{ifc}}}}, \quad \mathrm{~L}_{c}=P^{T} \mathrm{~L} P, \quad \text { and } M_{\mathrm{L}_{c}}=\mathrm{AMG}_{\mathrm{L}_{c}} .
$$

Concluding remarks

Conclusions

Summary:

- AMGR applies to both mirrored and repeated geometries regardless of the boundary conditions.

Conclusions

Summary:

- AMGR applies to both mirrored and repeated geometries regardless of the boundary conditions.
- AMGR preconditioner does not require decoupling Poisson's equation.
- Despite its aggressive coarsening, AMGR converges as the standard AMG.

Conclusions

Summary:

- AMGR applies to both mirrored and repeated geometries regardless of the boundary conditions.
- AMGR preconditioner does not require decoupling Poisson's equation.
- Despite its aggressive coarsening, AMGR converges as the standard AMG.
- AMGR reduces the setup costs of AMG.
- AMGR reduces the memory footprint of AMG.
- AMGR increases the arithmetic intensity of AMG.

Summary:

- AMGR applies to both mirrored and repeated geometries regardless of the boundary conditions.
- AMGR preconditioner does not require decoupling Poisson's equation.
- Despite its aggressive coarsening, AMGR converges as the standard AMG.
- AMGR reduces the setup costs of AMG.
- AMGR reduces the memory footprint of AMG.
- AMGR increases the arithmetic intensity of AMG.

Ongoing work:

- Test AMGR on real CFD and structural problems.
- Test SpMM in simulations presenting symmetries or repeated geometries.

Thanks for your attention!

[^0]: ${ }^{1}$ F.X. Trias et al. (2015). "Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study" in Computers and Fluids.
 ${ }^{2}$ F. Dabbagh et al. (2017). "A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection" in Physics of Fluids.

[^1]: ${ }^{3}$ D. E. Aljure et al. (2018). "Flow over a realistic car model: Wall modeled large eddy simulations assessment and unsteady effects" in Journal of Wind Engineering and Industrial Aerodynamics.

[^2]: ${ }^{4}$ L. Paniagua et al. (2014). "Large Eddy Simulations (LES) on the Flow and Heat Transfer in a Wall-Bounded Pin Matrix" in Numerical Heat Transfer, Part B: Fundamentals.

[^3]: ${ }^{e}$ A. Alsalti-Baldellou et al. (2023). "Exploiting spatial symmetries for solving Poisson's equation", in Journal of Computational Physics.

