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F. Xavier Trias1

1Heat and Mass Transfer Technological Center,
Technical University of Catalonia

2Termo Fluids SL,
http://www.termofluids.com/

3Department of Civil, Environmental and Architectural Engineering,
University of Padova

May 11th 2023

http://www.termofluids.com/


Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks

Index

1 Context of the work
Targetted applications
Poisson’s equation in CFD

2 Solving Poisson’s equation
Block diagonal Laplace operator
Iterative solvers exploiting symmetries

3 Preconditioning Poisson’s equation
SpMM-based FSAI
SpMM-based AMG

4 Concluding remarks

2



Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks

Context of the work

3



Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks

CFD applications – 1

Figure: Simulation of flow around a square cylinder1 and Rayleigh-Bénard convection2.

1F.X. Trias et al. (2015). “Turbulent flow around a square cylinder at Reynolds number 22000:
a DNS study” in Computers and Fluids.

2F. Dabbagh et al. (2017). “A priori study of subgrid-scale features in turbulent
Rayleigh-Bénard convection” in Physics of Fluids.
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CFD applications – 2

Figure: Simulation of turbulent flow over the DrivAer fastback vehicle model3.

3D. E. Aljure et al. (2018). “Flow over a realistic car model: Wall modeled large eddy
simulations assessment and unsteady effects” in Journal of Wind Engineering and Industrial
Aerodynamics.
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CFD applications – 3

Figure: Simulation of brazed and expanded tube-fin heat exchangers4.

4L. Paniagua et al. (2014). “Large Eddy Simulations (LES) on the Flow and Heat Transfer in a
Wall-Bounded Pin Matrix” in Numerical Heat Transfer, Part B: Fundamentals.
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CFD applications – 4

Figure: Simulation of wind plant and array of “buildings” (from the internet).
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Poisson’s equation in incompressible CFD

Fractional Step Method (FSM)

1 Evaluate the auxiliar vector field r(vn) := −(v · ∇)v + ν∆v

2 Evaluate the predictor velocity vp := vn +∆t
(
3
2
r(vn)− 1

2
r(vn−1)

)
3 Obtain the pressure field by solving a Poisson equation:

∇ ·
(
1

ρ
∇pn+1

)
=

1

∆t
∇ · vp

4 Obtain the new divergence-free velocity vn+1 = vp −∇pn+1

Poisson’s equation for incompressible single-phase flows

Continuous:
∆p =

ρ

∆t
∇ · vp

Discrete:
Lph =

ρ

∆t
Mvph
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Solving Poisson’s equation
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Meshes with symmetries

(a) 1 symmetry (b) 2 symmetries

Figure: 2D meshes with varying number of symmetries.

10



Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks

“Mirrored” unknowns’ ordering

(a) 1 symmetry (b) 2 symmetries

Figure: “Mirrored” ordering on 2D meshes with a varying no. of symmetries.
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Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries,
and let us define the following change of basis:

P =
1√
2s

[
p⊗

i=1

(
1 1
1 −1

)]
⊗ In/2s ∈ Rn×n
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Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries,
and let us define the following change of basis:

P =
1√
2s

[
p⊗

i=1

(
1 1
1 −1

)]
⊗ In/2s ∈ Rn×n

Then, thanks to the “mirrored” ordering, P transforms L:

L =

 L1−1 . . . L1−2s

...
. . .

...
L2s−1 . . . L2s−2s

 ∈ Rn×n

into 2s decoupled subsystems5:

L̂ =

L̂1

. . .

L̂2s

 ∈ Rn×n

eA. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson’s
equation”, in Journal of Computational Physics.
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Let L be the discrete Laplace operator arising from a mesh with s symmetries,
and let us define the following change of basis:

P =
1√
2s

[
p⊗
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(
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(a) L (b) L̂ = PLP−1

Figure: 3D structured mesh exploiting s = 1 symmetries.
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Figure: 3D structured mesh exploiting s = 2 symmetries.
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Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries,
and let us define the following change of basis:

P =
1√
2s

[
p⊗

i=1

(
1 1
1 −1

)]
⊗ In/2s ∈ Rn×n

(a) L (b) L̂ = PLP−1

Figure: 3D structured mesh exploiting s = 3 symmetries.
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Resulting algorithm

Algorithm Poisson solver exploiting s mesh symmetries

1 Transform forward the RHS: b̂ = Pb

2 Decoupled solution of the 2s subsystems: L̂x̂ = b̂

3 Transform backward the solution: x = P−1x̂

where:

P =
1√
2s

[
p⊗

i=1

(
1 1
1 −1

)]
⊗ In/2s , P−1 = P,

and Step 2 corresponds to inverting:L̂1

. . .

L̂2s


 x̂1

...
x̂2s

 =

 b̂1

...

b̂2s
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Iterative solvers and mesh symmetries

The subsystems’ smaller size has multiple immediate advantages. Namely:

A reduction in Poisson solvers’ iteration count

A reduction in Poisson solvers’ memory footprint

An increase in Poisson solvers’ arithmetic intensity

In general, L̂ can be split as:

L̂ = · · · =

Linn

. . .

Linn

+


L
(1)
out

. . .

L
(2s)
out
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Iterative solvers and mesh symmetries

The subsystems’ smaller size has multiple immediate advantages. Namely:

A reduction in Poisson solvers’ iteration count

A reduction in Poisson solvers’ memory footprint

An increase in Poisson solvers’ arithmetic intensity

In general, L̂ can be split as:

L̂ = · · · =

Linn

. . .

Linn

+


L
(1)
out

. . .

L
(2s)
out


In particular, compact stencils only coupling adjacent nodes result in:

L̂v = (I2s ⊗ Linn)v︸ ︷︷ ︸
Sparse matrix-matrix

product (SpMM)

+ diag (lout)v︸ ︷︷ ︸
Element-wise product

of vectors (axty)
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Sparse matrix-matrix product

Given v ∈ Rn, the products by L̂ can be accelerated by replacing:

SpMV:

Linn

. . .

Linn


 v1

...
v2s



with SpMM: Linn (v1 . . .v2s)

Hence:

L̂’s SpMVs can be replaced with a combination of SpMM and axty

Since SpMV and SpMM are memory-bound kernels, SpMM’s acceleration
equals ISpMM/ISpMV

SpMM reads Linn once, whereas SpMV reads Linn 2s times.
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SpMM- vs SpMV-based solution of L̂’s subsystems
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Figure: Normalized time per Jacobi-PCG iteration on 2 Intel Xeon 8160 CPUs.

16



Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks

SpMM- vs SpMV-based solution of L̂’s subsystems

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

0 1 2 3 0 1 2 3 0 1 2 3

T
im

e 
(n

s)

Symmetries

Hypre Jacobi DOT AXPY SpMV

8M 64M 125M

Figure: Normalized time per Jacobi-PCG iteration on 2 Intel Xeon 8160 CPUs.

16



Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks

Summary

Summary:

The overhead of the two (communication-free) transforms is negligible.

Exploiting symmetries reduces the setup costs of the matrices.

Exploiting symmetries reduces the memory footprint of the matrices.

Exploiting symmetries reduces the time complexity of the solvers.

SpMM naturally applies to all operators of the form Â = I2s ⊗ A.

SpMM increases considerably the I of all the matrix multiplications.

Still missing...

Since all the subsystems are (slightly) different, so are their preconditioners,
and SpMM cannot be applied with them!
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Preconditioning Poisson’s equation

18
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Right, left and split preconditioning

Let A ∈ Rn and x, b ∈ Rn. Then, given the linear system Ax = b, we can
consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner M−1 ≃ A−1, the left-preconditioned system is:

M−1Ax = M−1b

Right preconditioning

Given the preconditioner M−1 ≃ A−1, the right-preconditioned system is:

AM−1y = b, where Mx = y

Split preconditioning

Given the preconditioner M−1 = M−1
1 M−1

2 ≃ A−1, the split-preconditioned
system is:

M−1
1 AM−1

2 y = M−1
1 b, where M2x = y

Thus, preconditioning reduces to operations of the type: y = M−1x

19
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Low-rank corrections on meshes with symmetries

As we saw, symmetric directions allow decomposing Poisson’s equation,
Lx = b, into 2s decoupled subsystems with the following structure:

Linn + L
(1)
out

. . .

Linn + L
(2s)
out


 x̂1

...
x̂2s

 =

 b̂1

...

b̂2s

 ,

and such that:

rank(L
(i)
out) = nifc ≪ rank(Linn) = n

Low-rank corrected preconditioners

Let Minn be a preconditioner for Linn, i.e., M
−1
inn ≃ L−1

inn . Then, we can seek
low-rank corrections for Minn such that:

L̂−1 ≃ I2s ⊗Minn +


W

(1)
k Θ

(1)
k W

(1)
k

t

. . .

W
(2s)
k Θ

(2s)
k W

(2s)
k

t

 ,

As a result: lower setup costs, decoupled corrections and SpMM!

20



Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks

Low-rank corrections on meshes with symmetries

As we saw, symmetric directions allow decomposing Poisson’s equation,
Lx = b, into 2s decoupled subsystems with the following structure:

Linn + L
(1)
out

. . .

Linn + L
(2s)
out


 x̂1

...
x̂2s

 =

 b̂1

...

b̂2s

 ,

and such that:

rank(L
(i)
out) = nifc ≪ rank(Linn) = n

Low-rank corrected preconditioners

Let Minn be a preconditioner for Linn, i.e., M
−1
inn ≃ L−1

inn . Then, we can seek
low-rank corrections for Minn such that:

L̂−1 ≃ I2s ⊗Minn +


W

(1)
k Θ

(1)
k W

(1)
k

t

. . .

W
(2s)
k Θ

(2s)
k W

(2s)
k

t

 ,

As a result: lower setup costs, decoupled corrections and SpMM!

20



Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks

Low-rank corrections on meshes with symmetries

As we saw, symmetric directions allow decomposing Poisson’s equation,
Lx = b, into 2s decoupled subsystems with the following structure:

Linn + L
(1)
out

. . .

Linn + L
(2s)
out


 x̂1

...
x̂2s

 =

 b̂1

...

b̂2s

 ,

and such that:

rank(L
(i)
out) = nifc ≪ rank(Linn) = n

Low-rank corrected preconditioners

Let Minn be a preconditioner for Linn, i.e., M
−1
inn ≃ L−1

inn . Then, we can seek
low-rank corrections for Minn such that:

L̂−1 ≃ I2s ⊗Minn +


W

(1)
k Θ

(1)
k W

(1)
k

t

. . .

W
(2s)
k Θ

(2s)
k W

(2s)
k

t

 ,

As a result: lower setup costs, decoupled corrections and SpMM!

20



Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks

Low-rank corrections for FSAI – 1

Figure: Low-rank corrected FSAI+PCG on a 1003 mesh with s = 1 symmetries.
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Low-rank corrections for FSAI – 2

Figure: Low-rank corrected FSAI+PCG on a 1003 mesh with s = 2 symmetries.
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Low-rank corrections for FSAI – 3

Figure: Low-rank corrected FSAI+PCG on a 1003 mesh with s = 3 symmetries.
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Low-rank corrections for FSAI – 4
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Final goal: SpMM-based AMG – 1

Figure: Single-grid smoothing.

Figure: Eigencomponents’
reduction.
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Final goal: SpMM-based AMG – 2

Figure: Two-grid smoothing. Figure: General V-cycle.

Still missing...

AMG heavily relies on matrix multiplications and, therefore, would particularly
benefit from SpMM.

As a result: lower setup costs and significant accelerations!

26



Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks

Final goal: SpMM-based AMG – 2

Figure: Two-grid smoothing. Figure: General V-cycle.

Still missing...

AMG heavily relies on matrix multiplications and, therefore, would particularly
benefit from SpMM.

As a result: lower setup costs and significant accelerations!

26



Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks

Low-rank corrections for AMG – 1

Figure: Low-rank corrected AMG+PCG on a 1003 mesh with s = 1 symmetries.
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Low-rank corrections for AMG – 2

Figure: Low-rank corrected AMG+PCG on a 1003 mesh with s = 2 symmetries.
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Low-rank corrections for AMG – 3

Figure: Low-rank corrected AMG+PCG on a 1003 mesh with s = 3 symmetries.
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Meshes with symmetries

(a) 1 symmetry (b) 2 symmetries

Figure: 2D meshes with varying number of symmetries.
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“Inner-interface” unknowns’ ordering

(a) 1 symmetry (b) 2 symmetries

Figure: “Inner-interface” ordering on 2D meshes with a varying number of symmetries.
Blue: inner nodes, red: interface nodes.
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Inn-Ifc discrete Laplace operator – 1

Let L be the discrete Laplace operator arising from a mesh with 1 symmetry
and an “inner-interface” unknowns’ ordering. Then:

L =

(
Ā B̄
B̄t C̄

)
∈ Rn×n,

where Ā ∈ Rninn×ninn , B̄ ∈ Rninn×nifc and C̄ ∈ Rnifc×nifc account for the
inner-inner, inner-interface and interface-interface couplings, respectively.

Moreover, they satisfy that:

Ā =

(
A

A

)
, B̄ =

(
B

B

)
and C̄ =

(
Cinn Cout

Cout Cinn

)
.

Eureka!

Given a geometry repeated nb times, a (non-mirrored) “inner-interface”
ordering leads to the same Laplacian but only satisfying Ā = Inb ⊗A.

Additionally, the “inner-interface” ordering works with symmetric domains with
non-symmetric boundary conditions!
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Inn-Ifc discrete Laplace operator – 1

Let L be the discrete Laplace operator arising from a mesh with 1 symmetry
and an “inner-interface” unknowns’ ordering. Then:

L =

(
Ā B̄
B̄t C̄

)
∈ Rn×n,

where Ā ∈ Rninn×ninn , B̄ ∈ Rninn×nifc and C̄ ∈ Rnifc×nifc account for the
inner-inner, inner-interface and interface-interface couplings, respectively.
Moreover, they satisfy that:

Ā =

(
A

A

)
, B̄ =

(
B

B

)
and C̄ =

(
Cinn Cout

Cout Cinn

)
.
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Additionally, the “inner-interface” ordering works with symmetric domains with
non-symmetric boundary conditions!

32



Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks

Inn-Ifc discrete Laplace operator – 1

Let L be the discrete Laplace operator arising from a mesh with 1 symmetry
and an “inner-interface” unknowns’ ordering. Then:

L =

(
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Overview of the AMGR framework – 1

We had that nb repeated geometries (with s symmetries, nb = 2s) lead to:

L =

(
Ā B̄
B̄t C̄

)
, where Ā =

A
. . .

A

 .

Then, we will consider a two-level AMG with the following fine-level smoother:

ML =

(
Inb ⊗MA

MC̄

)
,

the following prolongation:

P =

(
W
Inifc

)
∈ Rn×nifc ,

and the following coarse-level operator:

Lc = PTLP ∈ Rnifc×nifc .
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Overview of the AMGR framework – 2

In summary, our two-level AMGR will consist of:

ML =

(
Inb ⊗MA

MC̄

)
, P =

(
W
Inifc

)
, Lc = PTLP, and MLc = AMGLc .
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Concluding remarks
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Conclusions

Summary:

AMGR applies to both mirrored and repeated geometries regardless of
the boundary conditions.

AMGR preconditioner does not require decoupling Poisson’s equation.

Despite its aggressive coarsening, AMGR converges as the standard AMG.

AMGR reduces the setup costs of AMG.

AMGR reduces the memory footprint of AMG.

AMGR increases the arithmetic intensity of AMG.

Ongoing work:

Test AMGR on real CFD and structural problems.

Test SpMM in simulations presenting symmetries or repeated geometries.
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Thanks for your attention!
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