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CFD applications — 1

Figure: Simulation of flow around a square cylinder! and Rayleigh-Bénard convection?.

1F X, Trias et al. (2015). “Turbulent flow around a square cylinder at Reynolds number 22000:
a DNS study” in Computers and Fluids.

2F. Dabbagh et al. (2017). “A priori study of subgrid-scale features in turbulent
Rayleigh-Bénard convection” in Physics of Fluids.
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CFD applications — 2
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Figure: Simulation of turbulent flow over the DrivAer fastback vehicle model3.

’D. E. Aljure et al. (2018). “Flow over a realistic car model: Wall modeled large eddy
simulations assessment and unsteady effects” in Journal of Wind Engineering and Industrial
Aerodynamics.
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CFD applications — 3
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Figure: Simulation of brazed and expanded tube-fin heat exchangers*.

L. Paniagua et al. (2014). “Large Eddy Simulations (LES) on the Flow and Heat Transfer in a
Wall-Bounded Pin Matrix" in Numerical Heat Transfer, Part B: Fundamentals.
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CFD applications — 4
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Figure: Simulation of wind plant and array of “buildings” (from the internet).
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Poisson’s equation in incompressible CFD

Fractional Step Method (FSM)
@ Evaluate the auxiliar vector field r(v") := —(v - V)v + vAv
@ Evaluate the predictor velocity v¥ := v" + At (3r(v") — sr(v*™"))
© Obtain the pressure field by solving a Poisson equation:

lognity_ g o»
V(pr >_Atvv

@ Obtain the new divergence-free velocity v = v? — Vpnt!
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Poisson’s equation in incompressible CFD

Fractional Step Method (FSM)

@ Evaluate the auxiliar vector field r(v") := —(v - V)v + vAv
@ Evaluate the predictor velocity v¥ := v" + At (3r(v") — sr(v*™"))
© Obtain the pressure field by solving a Poisson equation:

lognity_ g o»
V(pr >_Atvv

@ Obtain the new divergence-free velocity v = v? — Vpnt!

Poisson’s equation for incompressible single-phase flows

o Continuous:

_ P g.yp
Ap—Ath
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Poisson’s equation in incompressible CFD

Fractional Step Method (FSM)

@ Evaluate the auxiliar vector field r(v") := —(v - V)v + vAv
@ Evaluate the predictor velocity v¥ := v" + At (3r(v") — sr(v*™"))
© Obtain the pressure field by solving a Poisson equation:

lognity_ g o»
V(pr >_Atvv

@ Obtain the new divergence-free velocity v = v? — Vpnt!

Poisson’s equation for incompressible single-phase flows

o Continuous:

Ap = Atv vP

@ Discrete:

Lpn = Mvh

At
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Solving Poisson’s equation
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Meshes with symmetries
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Figure: 2D meshes
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“Mirrored” unknowns' ordering
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Preconditioning

Poisson’s equation
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Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries,
and let us define the following change of basis:

1 | & /1 1
J— nxn
p_\/Ts (81)(1 71) ®1L,/2: €R
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Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries,
and let us define the following change of basis:

1 | S /1 1
— nxn
P- i |® (1 71) ® Loz € R
Then, thanks to the “mirrored” ordering, P transforms L:
L171 . L1728
L= : : eR™"
LQs_l e LQS_QS

into 2° decoupled subsystems®:

Ly
£: eRan
I:QS

€A. Alsalti-Baldellou et al. (2023). “Exploiting spatial symmetries for solving Poisson's
equation”, in Journal of Computational Physics.

Concluding remarks
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Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries,
and let us define the following change of basis:

P= 1 é(l 1) QI e R
v (g 1 e
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Figure: 3D structured mesh exploiting s = 1 symmetries.
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Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries,
and let us define the following change of basis:

1 L 1 1
J— nxn
P_\/TS ®(1 71> ®1L,/2s ER

(@)L (b) L=pPLP!

Figure: 3D structured mesh exploiting s = 2 symmetries.
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Discrete Laplace operator and mesh symmetries

Let L be the discrete Laplace operator arising from a mesh with s symmetries,
and let us define the following change of basis:

1 L 1 1
J— nxn
P_\/TS ®(1 71> ®1L,/2s ER

(@)L (b) L=pPLP!

Figure: 3D structured mesh exploiting s = 3 symmetries.
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Resulting algorithm

Concluding remarks
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Algorithm Poisson solver exploiting s mesh symmetries

@ Transform forward the RHS: b="Pb
@ Decoupled solution of the 25 subsystems: Lz =0

© Transform backward the solution: z = P~1%

where:

1 |y (1 1 -
pP— p-l_p
V2 @(1 —1) O lny2es ’

and Step 2 corresponds to inverting:
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Iterative solvers and mesh symmetries

The subsystems’ smaller size has multiple immediate advantages. Namely:
@ A reduction in Poisson solvers’ iteration count
@ A reduction in Poisson solvers’ memory footprint

@ An increase in Poisson solvers’ arithmetic intensity
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Iterative solvers and mesh symmetries

The subsystems’ smaller size has multiple immediate advantages. Namely:
@ A reduction in Poisson solvers’ iteration count
@ A reduction in Poisson solvers’ memory footprint

@ An increase in Poisson solvers’ arithmetic intensity
In general, L can be split as:

Linn L(l)

out

I—inn L(25)

out
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Iterative solvers and mesh symmetries

The subsystems’ smaller size has multiple immediate advantages. Namely:
@ A reduction in Poisson solvers’ iteration count
@ A reduction in Poisson solvers’ memory footprint

@ An increase in Poisson solvers’ arithmetic intensity
In general, L can be split as:

Linn L(l)

out

[t}
I
Il
Jr

I—inn L(25)

out

In particular, compact stencils only coupling adjacent nodes result in:

Lv = (Is ® Lipn) v + diag (loyt) v

Sparse matrix-matrix Element-wise product
product (SpMM) of vectors (axty)
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Sparse matrix-matrix product

Given v € R", the products by L can be accelerated by replacing:

Linn Vi

SpMV:

Concluding remarks

[e]e]e}
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Sparse matrix-matrix product

Given v € R", the products by L can be accelerated by replacing:

Linn Vi

SpMV: . with SpMM: Linn (V1 ...Vas)
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Sparse matrix-matrix product

Given v € R", the products by L can be accelerated by replacing:

Linn Vi
SpMV: with SpMM: Linn (V1 ...va2s)

Linn Vas

Hence:
o L's SpMVs can be replaced with a combination of SpMM and axty
@ Since SpMV and SpMM are memory-bound kernels, SpMM's acceleration
equals lspu/Ispuy
@ SpMM reads Lin, once, whereas SpMV reads Linn, 2° times.

Concluding remarks
0000000000 00OO000 [e]e]e}
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SpMM- vs SpMV-based solution of L's subsystems
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Figure: Normalized time per Jacobi-PCG iteration on 2 Intel Xeon 8160 CPUs.
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Figure: Normalized time per Jacobi-PCG iteration on 2 Intel Xeon 8160 CPUs.
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Summary

Summary:

@ The overhead of the two (communication-free) transforms is negligible.

17
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Summary

Summary:

The overhead of the two (communication-free) transforms is negligible.
Exploiting symmetries reduces the setup costs of the matrices.
Exploiting symmetries reduces the memory footprint of the matrices.

Exploiting symmetries reduces the time complexity of the solvers.
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Summary

Summary:

The overhead of the two (communication-free) transforms is negligible.
Exploiting symmetries reduces the setup costs of the matrices.
Exploiting symmetries reduces the memory footprint of the matrices.
Exploiting symmetries reduces the time complexity of the solvers.
SpMM naturally applies to all operators of the form A=1Ts ®A.

SpMM increases considerably the | of all the matrix multiplications.
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Summary

Summary:

@ The overhead of the two (communication-free) transforms is negligible.

Exploiting symmetries reduces the setup costs of the matrices.

Exploiting symmetries reduces the memory footprint of the matrices.

Exploiting symmetries reduces the time complexity of the solvers.

SpMM naturally applies to all operators of the form A=1Ts ®A.

@ SpMM increases considerably the | of all the matrix multiplications.

Still missing...

Since all the subsystems are (slightly) different, so are their preconditioners,
and SpMM cannot be applied with them!
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Preconditioning Poisson’s equation

Concluding remarks
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Right, left and split preconditioning

Let A € R™ and z,b € R™. Then, given the linear system Az = b, we can
consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner M~ ~ A~!, the left-preconditioned system is:

M Az =M 'b
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Right, left and split preconditioning

Let A € R™ and z,b € R™. Then, given the linear system Az = b, we can
consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner M~ ~ A~!, the left-preconditioned system is:

M Az =M 'b

Right preconditioning

Given the preconditioner M ~! ~ A=, the right-preconditioned system is:

AM ty =b, where Mz =y
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Right, left and split preconditioning

Let A € R™ and z,b € R™. Then, given the linear system Az = b, we can
consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner M~ ~ A~!, the left-preconditioned system is:

M Az =M 'b

Right preconditioning

Given the preconditioner M ~! ~ A=, the right-preconditioned system is:

AM ty =b, where Mz =y

Split preconditioning

Given the preconditioner M ! = MflMgl ~ A™! the split-preconditioned
system is:
M AM; 'y = M7 'b, where Moz =y
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Right, left and split preconditioning

Let A € R™ and z,b € R™. Then, given the linear system Az = b, we can
consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner M~ ~ A~!, the left-preconditioned system is:

M Az =M 'b

Right preconditioning

Given the preconditioner M ~! ~ A=, the right-preconditioned system is:

AM ty =b, where Mz =y

Split preconditioning

Given the preconditioner M ! = MflMgl ~ A™! the split-preconditioned
system is:
M AM; 'y = M7 'b, where Moz =y

Thus, preconditioning reduces to operations of the type: y = M ™'z
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Low-rank corrections on meshes with symmetries

As we saw, symmetric directions allow decomposing Poisson’s equation,
Lz = b, into 2° decoupled subsystems with the following structure:

Linn + LSY % b,

Linn + L((j:) )223 lA)QS
and such that:

rank(L3)) = nire < rank(Linn) =71

Concluding remarks

[e]e]e}
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Low-rank corrections on meshes with symmetries

As we saw, symmetric directions allow decomposing Poisson’s equation,
Lz = b, into 2° decoupled subsystems with the following structure:

Linn + LSY % b,

Linn + L((j:> )A(QS l325
and such that:

rank(Lgi)t) = nige K rank(Linn) = n ‘

Low-rank corrected preconditioners

Let M., be a preconditioner for Linn, i.e., ]\/[i;n1 ~ Li;nl. Then, we can seek
low-rank corrections for Mi,, such that:

W,il)@g)W,il)t
L712H25®Mnn+ 2
23 28 28 t
we wE)

20
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Low-rank corrections on meshes with symmetries
As we saw, symmetric directions allow decomposing Poisson’s equation,
Lz = b, into 2° decoupled subsystems with the following structure:
1 R .
Linn + LS30 %) b,

Linn + L(2S> )A(QS lA)QS

out

and such that:

rank(Lgi)t) = nige K rank(Linn) = n ‘

Low-rank corrected preconditioners

Let M., be a preconditioner for Linn, i.e., ]\/[i;n1 ~ Li;nl. Then, we can seek
low-rank corrections for Mi,, such that:

W,il)@g)W,il)t
L™ ~ s @ Minn + )
WIEQS)QI(CQS)WIE?S)):
As a result: lower setup costs, decoupled corrections and SpMM!

20
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Low-rank corrections for FSAl — 1

FSAl(1e-02,3) - eigtol=1.0e-02
T T
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rank 6 (3 vectors)
rank 8 (4 vectors)
rank 10 (5 vectors)
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Relative residual
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Figure: Low-rank corrected FSAI+PCG on a 1002 mesh with s = 1 symmetries.
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Low-rank corrections for FSAI — 2

FSAl(1e-02,3) - eigtol=1.0e-02
T : T :
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rank 4 (1 vectors)
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rank 12 (3 vectors)
rank 16 (4 vectors)
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Figure: Low-rank corrected FSAI+PCG on a 1002 mesh with s = 2 symmetries.
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Low-rank corrections for FSAIl — 3
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Figure: Low-rank corrected FSAI+PCG on a 1003 mesh with s = 3 symmetries.
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Low-rank corrections for FSAI — 4
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Figure: Normalised time per PCG+LRCFSAI(k) iteration on MARCONI100.
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Final goal: SpMM-based AMG -1
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Final goal: SpMM-based AMG — 2
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Figure: Two-grid smoothing.

Figure: General V-cycle.
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Final goal: SpMM-based AMG — 2
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Figure: General V-cycle.
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Figure: Two-grid smoothing.

Still missing...
AMG heavily relies on matrix multiplications and, therefore, would particularly

benefit from SpMM.
As a result: lower setup costs and significant accelerations!
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Relative residual

108

1010

Solving Poisson’s equation

Preconditioning Poisson’s equation
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Concluding remarks

Figure: Low-rank corrected AMG+PCG on a 1003 mesh with s = 1 symmetries.
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Concluding remarks

Figure: Low-rank corrected AMG+PCG on a 1003 mesh with s = 2 symmetries.
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Low-rank corrections for AMG - 3
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Concluding remarks

Figure: Low-rank corrected AMG+PCG on a 1003 mesh with s = 3 symmetries.
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Meshes with symmetries
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“Inner-interface” unknowns’ ordering

(a) 1 symmetry (b) 2 symmetries

Figure: “Inner-interface” ordering on 2D meshes with a varying number of symmetries.
Blue: inner nodes, red: interface nodes.
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Inn-Ifc discrete Laplace operator — 1

Let L be the discrete Laplace operator arising from a mesh with 1 symmetry
and an “inner-interface” unknowns’ ordering. Then:

A B
L= (Bt C) eR™",
where A € R™m*"im 3 ¢ R™m*"itc and C' € R™if*"f account for the
inner-inner, inner-interface and interface-interface couplings, respectively.

Preconditioning Poisson’s equation Concluding remarks
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Let L be the discrete Laplace operator arising from a mesh with 1 symmetry
and an “inner-interface” unknowns’ ordering. Then:

A B nxn
L= (Bt C) € R™*"™,
where A € R X% = B ¢ R%m X% gnd C' € R™f X" account for the

inner-inner, inner-interface and interface-interface couplings, respectively.
Moreover, they satisfy that:

T A 5 B ~ Cinn Cout
a=(t ) m=(" p)amac=(Gm O,
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Inn-Ifc discrete Laplace operator — 1

Let L be the discrete Laplace operator arising from a mesh with 1 symmetry
and an “inner-interface” unknowns’ ordering. Then:

A B nxn
L= ( 5t C) € R™*"™,
where A € R X% = B ¢ R%m X% gnd C' € R™f X" account for the

inner-inner, inner-interface and interface-interface couplings, respectively.
Moreover, they satisfy that:

o A Do B ~ Cinn Cout
A_< A), B_( B) andC—(COUt C)

Eureka!

Given a geometry repeated n;, times, a (non-mirrored) “inner-interface”
ordering leads to the same Laplacian but only satisfying A = I,, ® A.
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Inn-Ifc discrete Laplace operator — 1

Let L be the discrete Laplace operator arising from a mesh with 1 symmetry
and an “inner-interface” unknowns’ ordering. Then:

_(A B nxn
(B By ewe,

where A € R™m*"im 3 ¢ R™m*"itc and C' € R™if*"f account for the
inner-inner, inner-interface and interface-interface couplings, respectively.
Moreover, they satisfy that:

T A 5 B ~ Cinn Cout
a=(t ) m=(" p)amac=(Gm O,

Eureka!

Given a geometry repeated n;, times, a (non-mirrored) “inner-interface”
ordering leads to the same Laplacian but only satisfying A = I,, ® A.

Additionally, the “inner-interface” ordering works with symmetric domains with
non-symmetric boundary conditions!
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Overview of the AMGR framework — 1

We had that ny, repeated geometries (with s symmetries, n, = 2°) lead to:

A B <
L= <Bt C’)’ where A =

A

Then, we will consider a two-level AMG with the following fine-level smoother:

Hn ®MA )
M= ("™ ,
~( s

33



Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks

000000 000000000 0000000000000 00e0 [e]e]e}

Overview of the AMGR framework — 1

We had that ny, repeated geometries (with s symmetries, n, = 2°) lead to:

A B <
L= <Bt C’)’ where A =

A

Then, we will consider a two-level AMG with the following fine-level smoother:

Hn ®MA )
M= ("™ ,
~( s

the following prolongation:

P= (W> € Rk,

]Inifc
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Overview of the AMGR framework — 1

We had that ny, repeated geometries (with s symmetries, n, = 2°) lead to:

A B <
L= <Bt C’)’ where A =

A

Then, we will consider a two-level AMG with the following fine-level smoother:

Hn ®MA )
M= ("™ ,
~( s

the following prolongation:

P= (W> € Rk,

]Inifc
and the following coarse-level operator:

Le = PTLP € R™MeX e,
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Overview of the AMGR framework — 2

In summary, our two-level AMGR will consist of:

(Hnb ® MA

M. = ) Pz(W>, Le = PTLP, and My, = AMG,.

I[7"'ifc

34



Context of the work
000000

Solving Poisson’s equation Preconditioning Poisson’s equation
000000000 000000000 00O00000

Concluding remarks

Concluding remarks
000

35



Context of the work Solving Poisson’s equation Preconditioning Poisson’s equation Concluding remarks
000000 000000000 00000000000000000 oceo

Conclusions

Summary:

o AMGR applies to both mirrored and repeated geometries regardless of
the boundary conditions.
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Conclusions

Summary:

o AMGR applies to both mirrored and repeated geometries regardless of
the boundary conditions.

@ AMGR preconditioner does not require decoupling Poisson's equation.

@ Despite its aggressive coarsening, AMGR converges as the standard AMG.
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Conclusions

Summary:

AMGR applies to both mirrored and repeated geometries regardless of
the boundary conditions.

AMGR preconditioner does not require decoupling Poisson’s equation.
Despite its aggressive coarsening, AMGR converges as the standard AMG.
AMGR reduces the setup costs of AMG.

AMGR reduces the memory footprint of AMG.

AMGR increases the arithmetic intensity of AMG.
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Conclusions

Summary:

o AMGR applies to both mirrored and repeated geometries regardless of
the boundary conditions.

AMGR preconditioner does not require decoupling Poisson’s equation.
Despite its aggressive coarsening, AMGR converges as the standard AMG.
AMGR reduces the setup costs of AMG.

AMGR reduces the memory footprint of AMG.

AMGR increases the arithmetic intensity of AMG.

Ongoing work:
o Test AMGR on real CFD and structural problems.

@ Test SpMM in simulations presenting symmetries or repeated geometries.

36



Context of
000000

the work

Solving Poisson’s equation Preconditioning Poisson’s equation
000000000 0000000000 00OO000

Thanks for your attention!

Concluding remarks
[e]e]
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