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Summary. Extracting flow statistics from flow simulations requires generally long in-
tegration intervals in which a good deal of the time is spent time-averaging the results.
In order to avoid this, ensemble averaging can be applied to reduce the overall simula-
tion time by simulating multiple statistically independent flow states for a smaller period
of time and later averaging among them. In order to optimize the process, a cross-
platform portable parallel-in-time method is presented in which the overall simulation is
solved making use of sparse matrix-matrix products (SpMM), a high arithmetic intensity
counterpart for sparse matrix-vector products, so that the efficiency of the simulation is
increased.

1 INTRODUCTION

Accurate simulations of the incompressible Navier-Stokes equations with high Reynolds
numbers has been one of the most common applications for high performance computing
(HPC) systems, since the large grids required to capture all the resolved scales lead to
parallelization in order to reduce the time spent in each simulation. Even though the
computational power available is increasing constantly, the possibility of performing a
DNS (or even LES) for most of real life applications is still rare, extremely time consuming,
and computationally expensive.

Nonetheless, the parallelization is generally applied to space, since time is essentially
a sequential process and thus, time-parallelization would seem difficult to apply given
that time is usually advanced explicitly, being the most common options the second-order
Adams-Bashforth (AB2) or three- or four-stage Runge-Kutta (RK3,RK4) schemes. How-
ever, Falgout et al. [1] proposed a parallel-in-time method for parabolic problems, in which
a limited set of time-discretizations were iteratively solved in a multigrid-like approach,
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the Multigrid Reduction In Time (MGRIT). By applying it to the incompressible Navier-
Stokes equations, Christopher et al. [2] obtained a 7-fold speed up on 1024 processors
when compared to the time-sequential simulation, for the Stokes second problem.

Other parallel-in-time techniques that have been applied to the incompressible Navier-
Stokes equations are those presented by Krasnopolsky [3] in which multiple simulations
are run simultaneously in time, with CPU parallelization, by exploiting the possibility of
solving simultaneously multiple sparse matrix-vector products (SpMV) in the so-called
generalized sparse matrix-vector products (GSpMV) or sparse matrix-matrix products
(SpMM). By doing so, a memory-bound operation such as the SpMV which generally
does not exceeed a small percentage of the peak prformance [4] has its arithmetic inten-
sity increased so that the computational efficiency improves. After doing so, ensemble
averaging techniques such as the presented by Marakashvili et al. [5], in which the flow
statistics can be obtained from multiple shorter simulations, or flow states, rather than
from a long time-averaged simulation, are applied. With this technique, Krasnopolsky
[3] obtained speed-ups between 1.5- to 2-fold in the test cases, which coincide with the
theoretical predictions.

2 PARALLEL-IN-TIME ENSEMBLE AVERAGING

The methodology for parallel-in-time ensemble averaging is based on the works of
Krasnopolsky [3]. The technique is based on the concept of solving multiple (d) flow
states simultaneously, in order to time-average the results within each of the flow states
and then perform an average among the flow states in order to obtain the flow statistics [5].
In order to exploit the low arithmetic intensity (AI) of SpMV, these multiple flow states
are solved in the same device and the resolution of the Poisson equation is performed in
parallel for all the flow states, in the so-called sparse matrix-matrix product (SpMM),
which corresponds to a product of a sparse matrix with a dense matrix with n columns;
while the rest of the SpMV operations are performed normally.

The arithmetic intensity of the SpMM product with n columns can be stated as in
(1), by assuming ideal temporal locality, where A is the sparse matrix, nnz(A),m, n are
the number of non-zero entries, rows and columns in the matrix, respectively; and d is
the number of flow states. Hence, the upper bound of the theoretical speed-up, Pd,ub

for an SpMM compared to its equivalent SpMV with the same sparse matrix is set as
AISpMM/AISpMV, which can be rewritten as in (2), while the lower-bound, Pd,lb can be
processed exactly as for the upper-bound, but considering zero temporal locality (and
thus replacing nnz(A) by n), leading to the speed-ups from Figure 1 according to the
number of right-hand side (RHS) vectors.

AISpMM(d) =
(2nnz(A) + 1)d

12nnz(A) + 4(m + 1) + 8(m + n + 1)d
, (1) Pd,ub =

AISpMM(d)

AISpMM(1)
, (2)

Regarding the parallel implementation of the methodology, the mesh used for all the
concurrent flow states will be distributed across multiple hybrid cluster nodes. Hence,
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Figure 1: Theoretical speed-up bounds for a sparse matrix A with nnz(A)/m = 17.

each of these splittings will be further split into either CPUs or GPUs. The usage of
hybrid nodes, together with its algebra-based framework, will make the cross-platform
portability natural, and thus the incorporation of external libraries (e.g. cuSPARSE [6])
in the developed methodology will be simplified.

3 APPLICATION TO CFD SIMULATIONS

The governing equations for a DNS method are the incompressible Navier-Stokes equa-
tions, which semi-discretized following the notation of [7] read as follows,

Mus = 0c, (3) Ω
duc

dt
+ C(us)uc −Duc + ΩGcpc = 0c, (4)

where M is the face-to-cell divergence operator, Ωc is a diagonal matrix containing
the cell volumes so that Ω = I3 ⊗ Ωc, Cc is the cell-to-cell convective operator so that
C = I3 ⊗ Cc, Dc is the cell-to-cell diffusive operator so that D = I3 ⊗ Dc, Gc is the
cell-to-cell gradient operator, us is the velocity field defined at the faces, and I3 is the
identity matrix of size 3.

Eq. (4) will be integrated in time with a third-order Runge-Kutta scheme [8] within
the framework of the projection method [9].

Hence, changing from SpMV to SpMM can be applied to each of the SpMV operations
that appear in an iteration of a third-order Runge-Kutta scheme applied to a projection
method (around 30 SpMV apart from the resolution of the three Poisson equations).
This leaves room for improvement in the method presented by Krasnopolsky [3], in which
this increase in the arithmetic intensity was applied only in the resolution of the system
of linear algebraic equations (SLAE), while the presented work intends to increase the
compute intensity in the totality of the iteration.

Note that the numerical scheme used for the spatial discretization will determine the
sparsity pattern as well as the density of the operator matrices C(us), D,G. According to
the definition of the speed-up upper-bound (2), which increases with increasing densities of
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the sparse matrix (nnz(A)/m), it can be seen that the effect of replacing SpMV by SpMM
will be enhanced by using higher-order numerical schemes for the spatial discretization.

Hence, the parallel-in-time ensemble averaging methodology will be tested in canonical
cases in order to compare the speed-ups obtained with the fully-SpMM case with the ones
obtained with SLAE-SpMM case [3].
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