Strategies for increasing the arithmetic intensity on ensemble averaged Parallel-in-time simulations

J. Plana-Riu¹, F.X. Trias¹, À. Alsalti-Baldellou^{1,2}, A. Oliva¹

¹Heat and Mass Transfer Technological Centre Technical University of Catalonia ²Termo Fluids S.L.

34th International Conference on Parallel Computational Fluid Dynamics

May 29th-31st, 2023 Cuenca, Ecuador

2 Ensemble averaging

3 Making use of SpMM in ensemble averaging

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Results	Conclusion
0000	000	0000	00	00
Motivation				

• CFD is a memory-bound computational process...

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging		Conclusion
0000	000	0000	00	00
Motivation				

• CFD is a memory-bound computational process...

• Research question 1: How can this be improved?

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Conclusion
0000			
Motivation			

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Conclusion
0000			
Motivation			

Figure: Root-mean-square velocity fluctuations in wall cooordinates for a $\text{Re}_{\tau} = 180$ channel flow. J. Kim, P. Moin and R.Moser (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics(177) pp. 133-166

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging		Conclusion
0000	000	0000	00	00
Motivation				

Figure: Temporal convergence of drag coefficient in a Re=22,000 square cylinder DNS. *F.X. Trias, A.Gorobets and A.Oliva (2015). Turbulent flow around a square cylinder at Reynolds number 22,000: A DNS study. Computers and Fluids (123) pp. 87-98*

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Conclusion
0000			
Motivation			

Figure: Time series and cumulative statistics for temperature at two points for $Ra = 10^8$ and 10^{10} Rayleigh-Bénard DNS. F.Dabbagh, F.X. Trias, A.Gorobets and A.Oliva (2017). A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection. Physics of Fluids (29) 105103

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Conclusion
0000			
Motivation			

Figure: Time series and cumulative statistics for temperature at two points for $Ra = 10^8$ and 10^{10} Rayleigh-Bénard DNS. F.Dabbagh, F.X. Trias, A.Gorobets and A.Oliva (2017). A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection. Physics of Fluids (29) 105103

But statistics require extremely long simulations...

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Conclusion
0000			
Motivation			

Figure: Time series and cumulative statistics for temperature at two points for $Ra = 10^8$ and 10^{10} Rayleigh-Bénard DNS. F.Dabbagh, F.X. Trias, A.Gorobets and A.Oliva (2017). A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection. Physics of Fluids (29) 105103

But statistics require extremely long simulations...

• Research question 2: Is there a way to shorten the averaging?

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Results	Conclusion
0000	000	0000	00	00
Ensemble	averaging			

Multiple RHS can be exploited in multiple ways (i.e. exploiting domain symmetries¹), yet in this case it will be by **ensemble averaging**.

Ensemble averaging

• Running *m parallel-in-time* simulations, and then average the results.

Figure: Regular averaging for calculation of statistics.

¹À.Alsalti-Baldellou, X.Álvarez-Farré, F.X. Trias, A.Oliva (2023). Exploiting spatial symmetries for solving Poisson's equation. Journal of Computational Physics (486) 112133

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Results	Conclusion
0000	000	0000	00	00
Ensemble ave	eraging			

Multiple RHS can be exploited in multiple ways (i.e. exploiting domain symmetries), yet in this case it will be by **ensemble averaging**.

Ensemble averaging

• Running *m parallel-in-time* simulations, and then average the results.

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Results	Conclusion
0000	000	0000	00	00
Ensemble	averaging			

Where does T_T end?

- Steady-state?
- Statistical decoupling between all cases run
 - Rolling Pearson correlation coefficient

$$ho_{xy}(ilde{t}) = rac{\mathsf{Cov}(x,y)(ilde{t})}{\sigma_x(ilde{t})\sigma_y(ilde{t})}$$

Figure: Rolling Pearson correlation coefficient for a Re $_{\tau}=180$ channel flow for m=3 with a window of 1500 iterations.

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Results	Conclusion
		●000		
Memory-bounded computation				

Memory-boundedness is due to SpMV operations... yet its arithmetic intensity (AI) can be improved if multiple RHS are used (leading to sparse matrix-matrix products (SpMM)).

Figure: Arithmetic intensity of SpMM up to 128 RHS vectors, with 17 non-zero entries per row.

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Results	Conclusion
0000	000	○●○○	00	OO
Making use o	of SpMM in ensei	mble averaging		

Previous work ...

- First developed by Krasnopolski²... the method was called generalized sparse matrix-vector product (GSpMV).
- Only applied in the solution of the Poisson equation for ensemble averaging.
- But... there are plenty of SpMV's that can be exploited:
 - Diffusive operator
 - Convective operator
 - ...
 - $\bullet~$ Up to 18 SpMV per iteration (in an AB2 setup) + Poisson

 $^{^{2}}B.I.$ Krasnopolski (2018). An approach for accelerating incompressible turbulent flow simulations based on simultaneous modeling of multiple ensembles. Computer Physics Communications (229) pp.8-19

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Results	Conclusion
0000	000	0000	00	00
Making use o	f SpMM in ensem	ble averaging		

In-house unstructured collocated code +

HPC² framework³⁴

Fully-portable, algebra-based framework

- BLAS-like kernels
- SpMM computation capabilities
- Fully-portable (CPU, GPU)
- Poisson solution

³X. Álvarez, A. Gorobets, F.X. Trias, R. Borrell, G. Oyarzun (2018). HPC²-A fully-portable, algebra-based framework for heterogeneous computing. Application to CFD. Computers and Fluids (173) pp.285-292

⁴X. Álvarez, A. Gorobets, F.X. Trias (2021). A hierarcical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers. Computers and Fluids (214) 104768

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging		Conclusion
0000	000	0000	00	00
Theoretica	al speed-ups			

- Increment on the AI will only be achieved in the SpMV (now replaced by SpMM)... thus let θ be the fraction of the iteration in which an SpMV is computed.
- Times ratio, $\beta = T_A/T_T$.

According to Krasnopolski¹...

$$P_m = \frac{1+\beta}{m+\beta} \frac{5m}{5m-3\theta(m-1)}$$

• Optimal value found for

$$m_{
m Opt} = \sqrt{rac{3eta heta}{5-3 heta}}$$

Figure: Theoretical speed-up bounds for a sparse matrix A with nnz(A)/n=17

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Results	Conclusion
0000	000	0000	••	00
Results A speed-up analysis				

Conditions

- ${\sf Re}_{ au}=180$ channel flow
- 128³ and 256³ meshes
 - Uniform in x and z.
 - Hyperbolic tangent stretching in y.
- 7 non-zero entries per row
- AB2 + CFL (0.35) integration
- Runs for 1, 2, 4, 8 rhs
- Algebraic approach for in-house code+HPC²
 - 100 non-preconditioned CG iterations
 - 2 MPI tasks, 20 OpenMP threads
 - 1 JFF fourth-generation compute node:
 - 2x Intel Xeon 6230

Figure: Time iteration speed-ups, $\tau,$ for 2, 4 and 8 RHS in 128^3 and 256^3 meshes, averaged for 40 time-steps.

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Results	Conclusion
0000	000	0000	00	00
Results A speed-up analysis				

Simulation speed-up extrapolation

$$P_{m}= aurac{1+eta}{m+eta}$$

Figure: Simulation speed-up for 2, 4 and 8 RHS in a 256^3 mesh, compared against the theoretical expression from Krasnopolski.

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Results	Conclusion
0000	000	0000	00	00
Results				
A speed-up analysis				

Figure: Simulation speed-up for 2, 4 and 8 RHS in a 256^3 mesh, compared against the theoretical expression from Krasnopolski.

Figure: Simulation speed-up for different β values for the 256 3 mesh, $\theta=$ 0.4.

- m = 8 has speed-up orall eta
- m = 4 speeds-up for $\beta \ge 2$, m = 2 for $\beta \ge 3$

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Results	Conclusion
0000	000	0000	00	•0
Concluding re Take-away messages	emarks			

• Ensemble averaging as a technique for computing statistics.

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Results	Conclusion
				••
Concluding re Take-away messages	emarks			

- Ensemble averaging as a technique for computing statistics.
- Original work from Krasnopolski can be extended to all SpMVs in the simulation.

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Results	Conclusion
0000	000	0000	00	•0
Concluding re Take-away messages	emarks			

- Ensemble averaging as a technique for computing statistics.
- Original work from Krasnopolski can be extended to all SpMVs in the simulation.
- Method works properly under certain conditions: 1-rhs-case should not fit in cache memory (128³-mesh case not working properly)

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Results	Conclusion
0000	000	0000	00	•0
Concluding re Take-away messages	emarks			

- Ensemble averaging as a technique for computing statistics.
- Original work from Krasnopolski can be extended to all SpMVs in the simulation.
- Method works properly under certain conditions: 1-rhs-case should not fit in cache memory (128³-mesh case not working properly)
- Leads to notable improvements compared to Krasnopolski's theoretical speed-ups (+11% for $\beta = 9, \theta = 0.52$).

Motivation	Ensemble averaging	Making use of SpMM in ensemble averaging	Results	Conclusion
				00
Concluding re	emarks			

- Full simulation speed-up calculation, with ensemble averaging statistics.
- Testing with multiple platform HPC systems.