

Exa, zetta, yotta and beyond

F.Xavier Trias¹, Àdel Alsalti-Baldellou^{1,2}, Assensi Oliva¹

¹Heat and Mass Transfer Technological Center, Technical University of Catalonia ²Termo Fluids S.L. Carrer de Magí Colet 8, 08204 Sabadell (Barcelona), Spain

Exa, zetta, yotta and beyond: on the evolution of Poisson solvers

F.Xavier Trias¹, Àdel Alsalti-Baldellou^{1,2}, Assensi Oliva¹

¹Heat and Mass Transfer Technological Center, Technical University of Catalonia ²Termo Fluids S.L. Carrer de Magí Colet 8, 08204 Sabadell (Barcelona), Spain

Notivation	Two competing effects	Solver convergence	Results 00	Conclusions

Contents

- 2 Two competing effects
- 3 Residual of Poisson's equation
- 4 Solver convergence

5 Results

Motivation ●00	Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions 00
Motiva	ation				

Research question #1:

• How can we develop **portable** and **efficient** CFD codes for large-scale simulations on modern supercomputers?

	1995	2000	2005	2010	2015	2020	
Techn	ology Trene	ls in HPC		Cepy Maic		FPGA	
	single-core C	PU clusters	multi-o	ore CPU clusters	hy	ybrid clusters	\rightarrow
				HBN	Avilink		

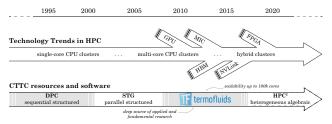
¹X.Álvarez, A.Gorobets, F.X.Trias. A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers. **Computers & Fluids**, 214:104768, 2021.

²Å.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation. Journal of Computational Physics, 486:112133, 2023.

Motivation ●00	Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions 00
Motiva	ation				

Research question #1:

• How can we develop **portable** and **efficient** CFD codes for large-scale simulations on modern supercomputers?



HPC²: portable, algebra-based framework for heterogeneous computing is being developed¹. Traditional stencil-based data and sweeps are replaced by algebraic structures (sparse matrices and vectors) and kernels. SpMM-based strategies to increase the arithmetic intensity are being considered².

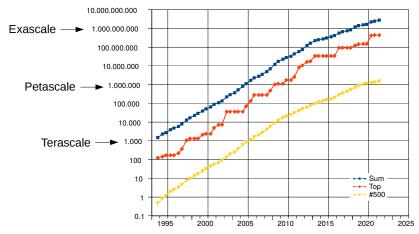
¹X.Álvarez, A.Gorobets, F.X.Trias. A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers. **Computers & Fluids**, 214:104768, 2021.

² Å.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. *Exploiting spatial symmetries for solving Poisson's equation*. Journal of Computational Physics, 486:112133, 2023.

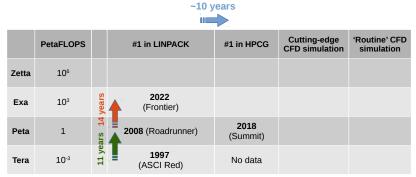
Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions 00

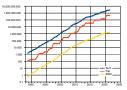
Tera, Peta, Exa,..., Zetta, Yotta

GFLOPS



Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions 00

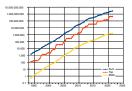




Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
000				

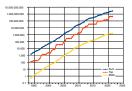
~10 years

	PetaFLOPS		#1 in LINPACK	#1 in HPCG	Cutting-edge CFD simulation	'Routine' CFD simulation				
Zetta	10 ⁶		2037	2047						
Exa	10 ³	14 years	(Frontier)	2032						
Peta	1		2008 (Roadrunner)	2018 (Summit)						
Tera	10-3	11 years	1997 (ASCI Red)	No data						



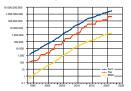
Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
000				

			~10 y	ears ~5 y	ears	
	PetaFLOPS		#1 in LINPACK	#1 in HPCG	Cutting-edge CFD simulation	'Routine' CFD simulation
Zetta	106		2037	2047	2052	
Exa	10 ³	14 years	(Frontier)	2032	2037	
Peta	1		2008 (Roadrunner)	2018 (Summit)	2023	
Tera	10 ⁻³	11 years	1997 (ASCI Red)	No data		



Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions 00

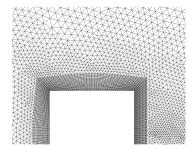
			~10 y	ears ~5 y	ears ~10	years
	PetaFLOPS		#1 in LINPACK	#1 in HPCG	Cutting-edge CFD simulation	'Routine' CFD simulation
Zetta	106		2037	2047	2052	2062
Exa	10 ³	years	(Frontier)	2032	2037	2047
Peta	1	14	2008 (Roadrunner)	2018 (Summit)	2023	2033
Tera	10 ⁻³	11 years	1997 (ASCI Red)	No data		



Motivation 00●	Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions 00
Motiva	ation				

Research question #2:

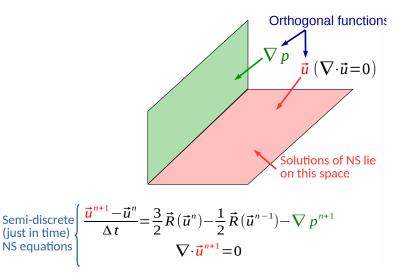
• Will the **complexity** of numerically solving **Poisson's equation** increase or decrease for **very large scale DNS/LES** simulations of incompressible turbulent flows?



DNS³ of the turbulent flow around a square cylinder at Re = 22000

³F.X.Trias, A.Gorobets, A.Oliva. *Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study*, **Computers&Fluids**, 123:87-98, 2015.

Motivation 000	Two competing effects ●00	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions 00



Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
	000			

Step 1:
$$\frac{\vec{u}^{p} - \vec{u}^{n}}{\Delta t} = \frac{3}{2} \vec{R}(\vec{u}^{n}) - \frac{1}{2} \vec{R}(\vec{u}^{n-1})$$

Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
	000			

Step 1:
$$\frac{\vec{u}^{p} - \vec{u}^{n}}{\Delta t} = \frac{3}{2} \vec{R} (\vec{u}^{n}) - \frac{1}{2} \vec{R} (\vec{u}^{n-1})$$
Step 2:
$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$

$$\int_{At} \frac{3}{2} \vec{R} (\vec{u}^{n}) - \frac{1}{2} \vec{R} (\vec{u}^{n-1}) - \nabla p^{n+1}$$
Semi-discrete (just in time)
NS equations
$$\begin{cases} \frac{\vec{u}^{n+1} - \vec{u}^{n}}{\Delta t} = \frac{3}{2} \vec{R} (\vec{u}^{n}) - \frac{1}{2} \vec{R} (\vec{u}^{n-1}) - \nabla p^{n+1} \\ \nabla \cdot \vec{u}^{n+1} = 0 \end{cases}$$

Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
	000			

Step 1:
$$\frac{\vec{u}^{p} - \vec{u}^{n}}{\Delta t} = \frac{3}{2} \vec{R} (\vec{u}^{n}) - \frac{1}{2} \vec{R} (\vec{u}^{n-1})$$
Step 2:
$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Step 3:
$$\vec{u}^{n+1} = \vec{u}^{p} - \Delta t \nabla p^{n+1}$$

$$u^{n+1}$$

$$u^{n+$$

Motivation 000	Two competing effects ○●○	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions 00

Research question #2:

 Will the complexity of numerically solving Poisson's equation increase or decrease for very large scale DNS/LES simulations of incompressible turbulent flows?

$$\left(\nabla^2 p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^p\right)$$

Two competing effects: who (if any) will eventually win?

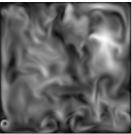
Re
$$\uparrow$$
 $\Delta x \downarrow \longrightarrow N_x \uparrow \longrightarrow$ Larger system \downarrow $\Delta t \downarrow \longrightarrow$ Better initial guess \uparrow

Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
	000			

Research question #2:

 Will the complexity of numerically solving Poisson's equation increase or decrease for very large scale DNS/LES simulations of incompressible turbulent flows?

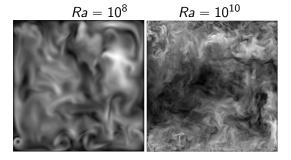
 $Ra = 10^{8}$



⁴F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection*, **Phys.Rev.Fluids**, 5:024603, 2020. 7/17

Research question #2:

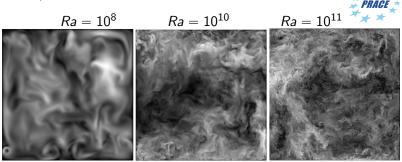
 Will the complexity of numerically solving Poisson's equation increase or decrease for very large scale DNS/LES simulations of incompressible turbulent flows?



⁴F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection*, **Phys.Rev.Fluids**, 5:024603, 2020. 7/17

Research question #2:

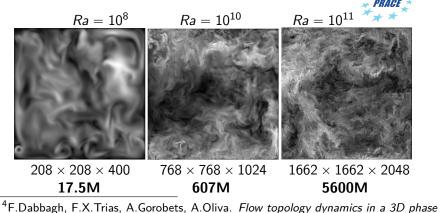
 Will the complexity of numerically solving Poisson's equation increase or decrease for very large scale DNS/LES simulations of incompressible turbulent flows?



⁴F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection*, **Phys.Rev.Fluids**, 5:024603, 2020. 7/17

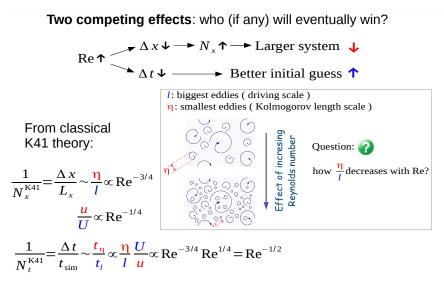
Research question #2:

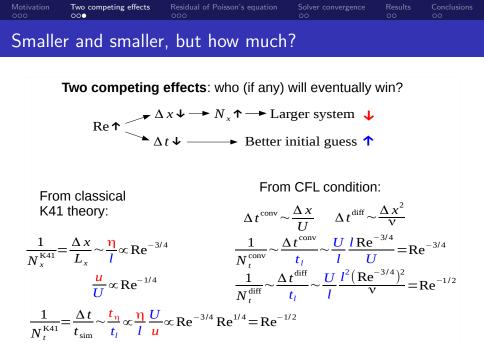
 Will the complexity of numerically solving Poisson's equation increase or decrease for very large scale DNS/LES simulations of incompressible turbulent flows?



space for turbulent Rayleigh-Bénard convection, Phys.Rev.Fluids, 5:024603, 2020. 7/17

Smaller and smaller, but how much?





Smaller and smaller, but how much?

Two competing effects: who (if any) will eventually win?

Re
$$\uparrow$$
 $\Delta x \downarrow \longrightarrow N_x \uparrow \longrightarrow$ Larger system \downarrow
 $\Delta t \downarrow \longrightarrow$ Better initial guess \uparrow

In summary:

$$\frac{1}{N_x^{K41}} = \frac{\Delta x}{L_x} \sim \frac{\eta}{l} \propto \text{Re}^{-3/4}$$

$$\alpha = -1/2 \quad (\text{ K41 or diffusion dominated })$$

$$\frac{\Delta t}{t_l} \sim \text{Re}^{\alpha} \qquad \alpha = -3/4 \quad (\text{ convection dominated })$$

000 000 000 00 00 00	Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
			● 00		

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess $\rightarrow p^{n}$

$$r^{o} = \nabla^{2} p^{n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1}$$

Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
		● 00		

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess $\rightarrow p^{n}$

$$r^{o} = \nabla^{2} p^{n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1} = \frac{1}{\Delta t} \nabla \cdot u^{p,n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = \nabla \cdot \frac{\partial u^{p}}{\partial t}$$

Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
		● 00		

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$

$$\downarrow \text{Initial guess} \Rightarrow p^{n}$$

$$r^{o} = \nabla^{2} p^{n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1} = \frac{1}{\Delta t} \nabla \cdot u^{p,n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = \nabla \cdot \frac{\partial u^{p}}{\partial t}$$

$$\tilde{r}^{o} = \nabla^{2} \tilde{p}^{n} - \nabla \cdot u^{p,n+1} \approx \nabla \cdot u^{p,n} - \nabla \cdot u^{p,n+1} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t} = \Delta t \nabla \cdot \frac{\partial u^{p}}{\partial t}$$

$$\uparrow \text{Initial guess} \Rightarrow \tilde{p}^{n} = \Delta t p^{n}$$

$$\nabla^{2} \tilde{p}^{n+1} = \nabla \cdot \vec{u}^{p}$$

Motivation Two	o competing effects	Residual of Poisson's equation	Solver convergence	Results	Conclusions
	o (000			

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess $\Rightarrow p^{n}$

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t}$$

$$\tilde{r}^{o} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t}$$
Initial guess $\Rightarrow \tilde{p}^{n} = \Delta t p^{n}$

$$\nabla^{2} \tilde{p}^{n+1} = \nabla \cdot \vec{u}^{p}$$

Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
		000		

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess $\Rightarrow p^{n}$

$$Q_{G} - criterion$$

Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Results	Conclusions
000	000	000			

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess $\Rightarrow p^{n}$

$$Q_{G} - criterion$$

$$P^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t \frac{\partial Q_{G}}{\partial t}$$

$$R_{G} = det(G) = \frac{1}{3} tr(G^{3})$$

$$\overline{P}^{o} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t^{2} \frac{\partial Q_{G}}{\partial t}$$

$$Q_{G} = -\frac{1}{2} tr(G^{2}) \text{ where } G = \nabla u^{n}$$

Exact equations for restricted Euler:

$$\frac{dQ_G}{dt} = -3R_G \longrightarrow \frac{\partial Q_G}{\partial t} = -(u \cdot \nabla)Q_G - 3R_G$$

Motivation 000	Two competing effects	Residual of Poisson's equation ○●○	Results 00	Conclusions

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess $\Rightarrow p^{n}$

$$Q_{G} - criterion$$

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t \{(u \cdot \nabla) Q_{G} + 3 R_{G}\}$$

$$\tilde{r}^{o} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t^{2} \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t^{2} \{(u \cdot \nabla) Q_{G} + 3 R_{G}\}$$

Exact equations for restricted Euler:

$$\frac{dQ_G}{dt} = -3R_G \longrightarrow \frac{\partial Q_G}{\partial t} = -(u \cdot \nabla)Q_G - 3R_G$$

Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
		000		

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess $\rightarrow p^{n}$

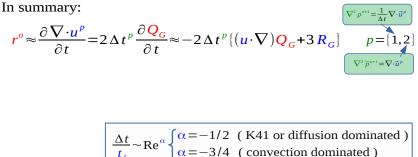
$$Q_{G} - criterion$$

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t \{(u \cdot \nabla) Q_{G} + 3 R_{G}\}$$

$$\tilde{r}^{o} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t^{2} \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t^{2} \{(u \cdot \nabla) Q_{G} + 3 R_{G}\}$$
Initial guess $\rightarrow \tilde{p}^{n} = \Delta t p^{n}$

$$\nabla^{2} \tilde{p}^{n+1} = \nabla \cdot \vec{u}^{p}$$

Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
		000		



$$\alpha = -3/4$$
 (convection dominated)

$$\frac{1}{N_x^{\rm K41}} = \frac{\Delta x}{L_x} \sim \frac{\eta}{l} \propto {\rm Re}^{-3/4}$$

Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
		000		

In summary:

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t^{p} \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t^{p} \{ (u \cdot \nabla) Q_{G} + 3 R_{G} \} \qquad p = [1, 2]$$

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t^{p} \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t^{p} \{ (u \cdot \nabla) Q_{G} + 3 R_{G} \} \qquad p = [1, 2]$$

$$r^{o} \approx \frac{\partial Q_{G}}{\partial t} = \frac{\partial Q_{G}}{\partial t} =$$

Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
		000		

In summary:

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t^{p} \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t^{p} \{ (u \cdot \nabla) Q_{G} + 3 R_{G} \}$$

$$p = \{1, 2\}$$

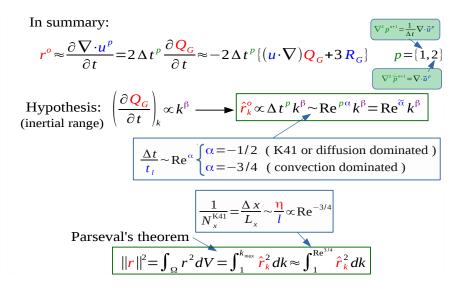
$$p = \{1, 2\}$$

$$\nabla^{2} p^{m_{1}} = \nabla \cdot u^{p}$$
Hypothesis:

$$\left(\frac{\partial Q_{G}}{\partial t}\right)_{k} \propto k^{\beta} \longrightarrow \hat{r}_{k}^{o} \propto \Delta t^{p} k^{\beta} \sim \operatorname{Re}^{p\alpha} k^{\beta} = \operatorname{Re}^{\alpha} k^{\beta}$$

$$\frac{\Delta t}{t_{l}} \sim \operatorname{Re}^{\alpha} \left\{ \begin{array}{c} \alpha = -1/2 & (\text{ K41 or diffusion dominated }) \\ \alpha = -3/4 & (\text{ convection dominated }) \end{array} \right\}$$
Parseval's theorem
$$\|r\|^{2} = \int_{\Omega} r^{2} dV = \int_{1}^{k_{max}} \hat{r}_{k}^{2} dk$$

Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
		000		



Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence ●0	Results 00	Conclusions

Solver convergence

$$\|\boldsymbol{r}^{n}\|^{2} = \int_{1}^{k_{max}} (\hat{\omega}_{k}^{n} \hat{\boldsymbol{r}}_{k}^{0})^{2} dk \approx \int_{1}^{\operatorname{Re}^{3/4}} \hat{\omega}_{k}^{2n} \operatorname{Re}^{2\widetilde{\alpha}} k^{2\beta} dk$$
$$\hat{\omega} = \frac{\hat{\boldsymbol{r}}_{k}^{n+1}}{\hat{\boldsymbol{r}}_{k}^{n}} \int_{1}^{\infty} (\hat{\boldsymbol{r}}_{k}^{0} \propto \Delta t^{p} k^{\beta} \sim \operatorname{Re}^{p\alpha} k^{\beta} = \operatorname{Re}^{\widetilde{\alpha}} k^{\beta})$$

$$\|\mathbf{r}\|^{2} = \int_{\Omega} r^{2} dV = \int_{1}^{k_{max}} \hat{\mathbf{r}}_{k}^{2} dk \approx \int_{1}^{\operatorname{Re}^{3/4}} \hat{\mathbf{r}}_{k}^{2} dk$$

Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence ●0	Results 00	Conclusions

$$||\boldsymbol{r}^{n}||^{2} = \int_{1}^{k_{max}} (\hat{\omega}_{k}^{n} \hat{\boldsymbol{r}}_{k}^{0})^{2} dk \approx \int_{1}^{\operatorname{Re}^{3/4}} \hat{\omega}_{k}^{2n} \operatorname{Re}^{2\widetilde{\alpha}} k^{2\beta} dk$$
$$\hat{\omega} = \frac{\hat{\boldsymbol{r}}_{k}^{n+1}}{\hat{\boldsymbol{r}}_{k}^{n}} \sqrt{\frac{\hat{\boldsymbol{r}}_{k}^{o} \propto \Delta t^{p} k^{\beta} \sim \operatorname{Re}^{p\alpha} k^{\beta} = \operatorname{Re}^{\widetilde{\alpha}} k^{\beta}}{\hat{\boldsymbol{r}}_{k}^{o} \propto \Delta t^{p} k^{\beta} - \operatorname{Re}^{p\alpha} k^{\beta} = \operatorname{Re}^{\widetilde{\alpha}} k^{\beta}}}$$

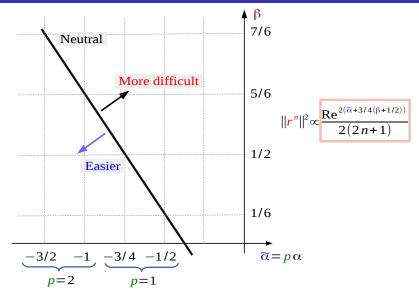
Jacobi:
$$||r^{n}||^{2} \propto \frac{\operatorname{Re}^{2(\widetilde{\alpha}+3/4(\beta+1/2))}}{2(2n+1)}$$

$$||\mathbf{r}||^{2} = \int_{\Omega} r^{2} dV = \int_{1}^{k_{max}} \hat{\mathbf{r}}_{k}^{2} dk \approx \int_{1}^{\operatorname{Re}^{3/4}} \hat{\mathbf{r}}_{k}^{2} dk$$

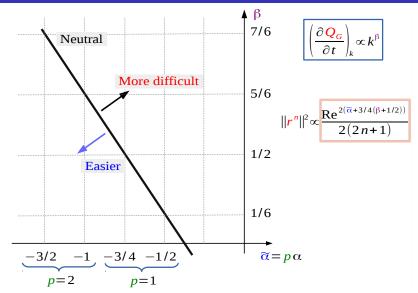
Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence ●0	Results 00	Conclusions

Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence ●0	Results 00	Conclusions 00

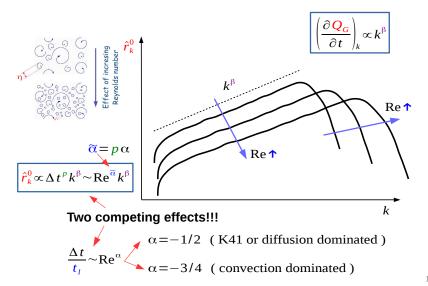
Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
000			00	



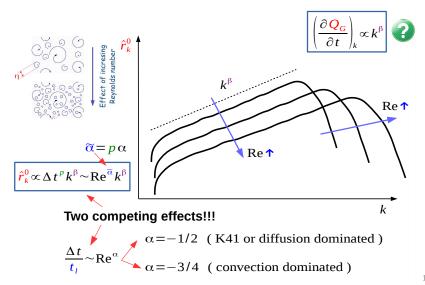
Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
			00	



Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Results	Conclusions
			00		

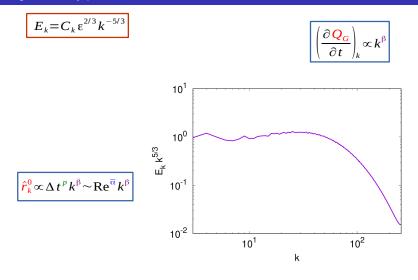


Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions
			00	



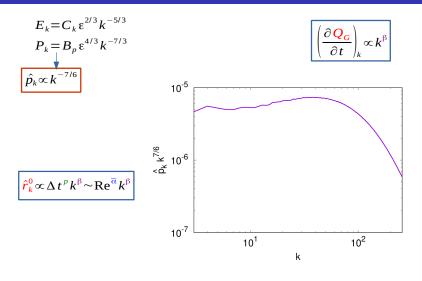
Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Results	Conclusions	
				00		

Kolmogorov theory predictions



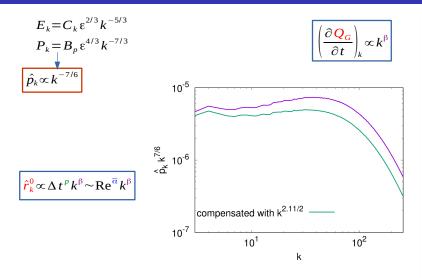
Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Results	Conclusions	
				00		

Kolmogorov theory predictions



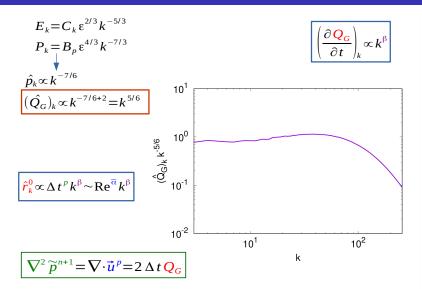
Motivation	Two competing effects	Residual of Poisson's equation	Solver convergence	Results	Conclusions	
				00		

Kolmogorov theory predictions



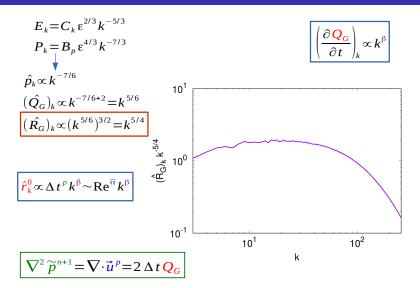
gence Results Conclusions	
o • oo	

New derivations



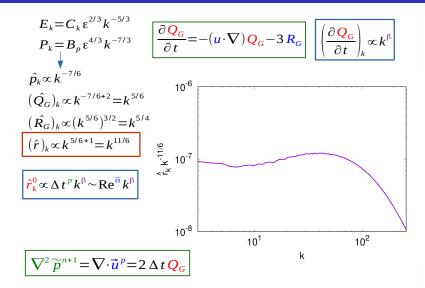
gence Results Conclusions	
o • oo	

New derivations



Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions 00

New derivations



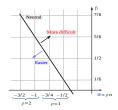
Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions ●0
Conclu	iding remarks	5			

• **Two competing effects** on the convergence of Poisson's equation have been identified.

Motivation 000	Two competing effects	Residual of Poisson's equation	Results 00	Conclusions ●0

Concluding remarks

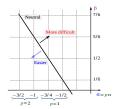
- **Two competing effects** on the convergence of Poisson's equation have been identified.
- The {α, β} phase space is divided in two regions depending on the solver convergence.

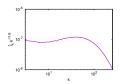


Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence	Conclusions ●0

Concluding remarks

- **Two competing effects** on the convergence of Poisson's equation have been identified.
- The {α, β} phase space is divided in two regions depending on the solver convergence.
- First numerical **results** match well with the **developed theory** prediction $\beta \approx 11/6$





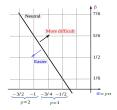
Motivation 000	Two competing effects	Residual of Poisson's equation	Results 00	Conclusions ●0

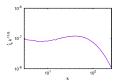
Concluding remarks

- **Two competing effects** on the convergence of Poisson's equation have been identified.
- The {α, β} phase space is divided in two regions depending on the solver convergence.
- First numerical **results** match well with the **developed theory** prediction $\beta \approx 11/6$

On-going and near future research:

- Carrying out simulations at higher Re_{λ}
- Extending the analysis to more complex flows





Motivation 000	Two competing effects	Residual of Poisson's equation		Conclusions 00

Thank you for your attendance