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Abstract. When pushing towards lighter and faster Computational Fluid Dynamics
simulations, the contribution and construction of every component should be considered.
The sparse matrix-vector product (SpMV) is the most expensive kernel among all oper-
ations. In some situations, e.g, with spatial reflection symmetries, the sparse matrices
have some repeated blocks that could be exploited for better performance. By transfer-
ring the repeated blocks only once, the amount of data to transfer is reduced, and thus,
the memory footprint of the simulation will be reduced. Moreover, with this framework,
the SpMV is transformed into a sparse matrix-matrix product (SpMM), reducing the memory
footprint and speeding-up the simulation. The method is tested in a differentially heated
cavity in order to test the performance gains with the use of the SpMM compared to the
use of a SpMV.

1 INTRODUCTION

Pushing toward bigger and bigger simulations of the incompressible Navier-Stokes equa-
tions requires an increase in the computational power available in high-performance com-
puting (HPC) systems. Nonetheless, as these cases require a lot of memory and data
transfer, it is not only the time spent computing that is relevant. Yet, the time spent in
data transferring becomes the most relevant part of the time budget of the simulation,
leading to what is known as a memory-bound process [1].
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If the Navier-Stokes equations are solved numerically, it is straightforward to divide
the operations into the well-known sparse matrix-vector product (SpMV), the dot product
(dot), the linear combination of vectors (axpy), and the elementwise product of vectors
(axty). These operations appear naturally in an algebraic approach, yet in stencil-based
approaches these operations are implemented based on nested mesh-loops.

SpMV, being the most computationally expensive operation, requires transferring the
data of the sparse matrix and the data of the whole full vector. This implies that the
amount of data to be transferred for bigger simulations takes a relevant time compared to
the time spent executing the operation. In this sense, some conditions might be exploited
to transfer a smaller amount of data, either in the matrix, in the vector, or both. This
implies that the kernel’s arithmetic intensity (Al), defined as the ratio of the computing
load and the data transferred, is low. Other techniques as the presented by Greathouse
and Daga [2] for GPU compute units aim to improve the performance of SpMV by mapping
properly the loads of the sparse matrix, leading to remarkable speed-ups compared to the
original CSR-based algorithms.

For instance, Krasnopolsky [3] developed the concept of solving n flow states simul-
taneously to later on ensemble averaging the results of these flow states. In this paper,
the SpMV operations were translated to sparse matrix-matrix products (SpMM) to all the n
flow states simultaneously as a single operation. By doing so, the amount of data to be
transferred compared to running n times the simulation was reduced, as the sparse matrix
was only transferred once. By doing so, the AI would increase notably, as the amount of
computations would be preserved while the amount of data transferred was reduced.

Later on, Alsalti-Baldellou et al. [4] exploited the domain’s symmetries or repetitions
to reduce the matrix’s size to transfer by splitting the domain in the inner cells within the
symmetric part and the bounds between every symmetric contribution. By doing so, the
number of right-hand sides (RHS), i.e., the number of columns in the full matrix, would
be 2¢, being d the number of symmetries in the domain.

While in the former, the methodology was only applied in the solution of the linear
system of equations of the projection method, and no results in the speed-up of SpMM
were presented, the latter applied this methodology to all the SpMV operations within the
simulation, i.e., in the use of the gradient, divergence, and Laplacian operators.

Thus, the presented methodology can be applied in different situations apart from the
ones previously mentioned: ensemble averaging of the time averaged results of turbulent
flow simulations, application in domains with mirror symmetries or repeated geometrical
structures (e.g. wall mounted cubes, wind farm), or parametric studies by changing
relevant values in the simulations. Nonetheless, the framework of this study is based on
ensemble averaging the solutions, following the works of Krasnopolsky [3].

2 APPLICATION TO CFD SIMULATIONS

Following the notation of Verstappen and Veldman [5], the semi-discrete incompressible
Navier-Stokes equations read as follows for a staggered case,
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du,

Mug =0, 1 )
(1) pr

+ C(us)us, = —QGp. + Du, + £, (2)

where M is the face-to-cell divergence operator, ) = I3 ® (), where {2, is a diagonal
matrix containing the staggered volumes; C' is the convective operator represented by
a skew-symmetric matrix given a symmetry-preserving discretization; D is the diffusive
operator and G is the cell-to-face gradient operator, and f; represents the body forces.

More precisely, the tests were run in one high memory node of MareNostrumb super-
computer (2x Intel Xeon Platinum 8480, 2x56 CPU cores) loading the node with around
400k cells per CPU core (46.65M cells), so that the largest cases would fit in the nodes.

The time-integration scheme used was a Heun third-order Runge-Kutta scheme (RK3)
with a self-adaptive time step size computed based on the eigenbounds of the convective
and diffusive operators. The results were tested to be independent of the scheme used.

The discretization scheme for the operators considered only the first neighbor cell,
leading to 7 non-zeros per row in a three-dimensional case. Nonetheless, the Laplacian
operator for the Poisson equation was tested considering the first neighbor (7p), a cross
pattern (13p, 13 non-zero entries per row), and a cube pattern (27p, 27 non-zero entries
per row). A two-dimensional representation of these stencils is shown in Fig. .

Figure 1: Two-dimensional representations of the stencil for 7p (left), 13p (center) and 27p (right). The
shaded cells represent the first neighbors in all representations.

The tests were run by setting a fixed number of iterations in the Poisson solver solution.
The speed-up was computed as follows: considering the n = 1 simulation as the baseline,
with a SpMV time Tgpwy, the speed-up for a given n with Tgyuy(n) is determined by

nTSpMV

: (3)

In this case, the tests will be applied to a differentially heated cavity (DHC) setup with
Rayleigh number Ra = 10'° and Prandtl number Pr = 0.71 with aspect ratio 4 in a setup
similar to Krasnopolsky [3] so that multiple flow states, which correspond to 1, 2, 4, and
8 RHS, will be launched simultaneously for a few iterations to compute the speed-ups of

PmSpMM(n) a Ts MM(n)
pMM(n
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the SpMM operations. A higher number of non-zeros in the sparse matrix positively affects
the speed-ups obtained, as for 8 RHS, the speed-ups go from maximum values of ~2.5 to
~3.5 for 7p and 27p, respectively.
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Figure 2: Speed-up for the 7p (left), 13p (center), and 27p (right) discretizations for a given number of
Poisson solver iterations in the DHC case. The dashed line provides the upper bound of the speed-up,
whereas the dot-dash line defines the lower bound, according to Alsalti-Baldellou et al. [4].

Fig. [2 presents the results for 150, 350, and 550 iterations per solution of the Poisson
equation for all 7p, 13p, and 27p. The results in all three cases lay between the theoretical
upper and lower bounds, according to Alsalti-Baldellou et al. [4]. It would be expected
to obtain a slightly better performance for a greater number of iterations as the weight
of the Poisson equation would rise in the overall wall clock time. However, the relevance
of a greater number of iterations in the speed-up should decrease the bigger the value.

The method has been tested as well for other cases such as a turbulent planar channel

flow of Re, = 180 with a similar mesh and load, leading to equivalent results to the
presented in Fig. [

3 CONCLUSIONS

In this work, the speed-up analysis obtained in the use of SpMM in simulations in which
there are repeated matrix blocks compared to the use of a single RHS (i.e., a SpMV) is
presented and compared against the theoretical upper and lower bounds for three different
configurations, presented in Fig. [I} 7p, 13p and 27p.

It can be seen in Figs. [2/?? that the numerical speed-ups are obtained between the
theoretical upper and lower bounds, being approximately equidistant to both bounds in
all the cases run for both DHC and CF. Moreover, it can be observed that the denser
the sparse matrix, the higher the speed-up, leading to an increased interest in applying
the method to simulations in which the discretization is of a higher order, i.e., with more
non-zeros per row, compared to using only the first neighbor, with 7 non-zeros per row.
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