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Introduction
One big problem...
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Existing resources...

Computational power from current top
HPC systems is in the exaflop range...

Sparse algebra, however...

has a low arithmetic intensity
is limited by memory bandwidth

HPCG is the benchmark for us.

Possible solutions...

Improving arithmetic intensity!
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Introduction
Arithmetic intensity
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What is the arithmetic (or operational)
intensity?

Ratio between the number of operations
and the amount of data that has to be
handled (sent/received)

1S. Williams et al. “Roofline: an insightful visual performance for multicore architectures,” Commun. ACM 52, 2009
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intensity?
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Oper. # Mat. # Vec. sent # Vec. recv # Ops

2x SpMV 2 2 2 2
1x 2-SpMM 1 2 2 2

Oper. Equivalent arithmetic intensity**

2x SpMV 2/(2+2+2)=1/3
1x 2-SpMM 2/(1+2+2)=2/5

1S. Williams et al. “Roofline: an insightful visual performance for multicore architectures,” Commun. ACM 52, 2009
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Repeated matrix blocks

CFD simulations are full of sparse matrix-vector products (SpMV):

un+1 = u∗,n+1 − Gψn+1

u∗
i = un + ∆t

∑i−1
j=1 aij(Duj − C(uj)uj)

rk+1 = rk − αkApk

...

Following the previous example...

If some repeated matrrix block structures are present SpMV can be translated to SpMM:

Symmetries
Repeated geometry patterns
Ensemble averaging parallel-in-time
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Ensemble averaging parallel-in-time

0 50000 100000 150000 200000 250000 300000 350000

Iteration count

0

50

100

u
x TATT x m

Ensemble average

Ux =
1

m

m∑
i=1

< ux,i > =
1

m

m∑
i=1

1

T − TT

∫ T

TT

ux,idt

m simulations as a single one...

C = Im ⊗ C

D = Im ⊗ D

G = Im ⊗ G
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Ensemble averaging parallel-in-time

du

dt
+C (u)u = −Gp+Du → dU

dt
+C(U)U = −GP +DU

Block structures appear in C,G,D
SpMV’s can be translated to SpMM!

Increases the arithmetic intensity
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+C (u)u = −Gp+Du → dU

dt
+C(U)U = −GP +DU

Block structures appear in C,G,D
SpMV’s can be translated to SpMM!

Increases the arithmetic intensity
Increases performance → speed-up!
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Ensemble averaging parallel-in-time

Generation of speed-up

Speed-up in SpMV is guaranteed by increasing the AI

How does this translate to the whole simulation and iteration?

TT will be simulated m times...
Speed-up in TA has to be big enough!

Times ratio β

β =
TA

TT

Estimation of simulation speed-up2

Speed-up of the iteration, Pm,ite

Extension to the whole simulation

2B.I. Krasnopolsky, “An approach for accelerating incompressible turbulent flow simulations based on simultaneous modelling

of multiple ensembles,” Comput. Phys. Commun. 229, 2018
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Methodology
Case definition

Differentially heated cavity of aspect ratio 4

Semi-discrete governing equations

Mus = 0c ,

Ω
duc

dt
+ C (us)uc −

Pr

Ra1/2
Duc + ΩGcpc + Ωfc = 0c ,

Ω
dθc
dt

+ C (us)θc −
1

Ra1/2
Dθc = 0c

3rd-order Heun Runge-Kutta3, SAT4

Ra=1010, Pr=0.71

fc = (0,Prθ, 0)

θC = −0.5θH = 0.5

3B. Sanderse and B. Koren, “Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes

equations,” J. Comput. Phys. 231, 2012
4J. Plana-Riu et al, “Cost-vs-accuracy analysis of self-adaptive time-integration methods,” 10th THMT, 2023
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Numerical tests in CPU
Construction of test case

Characteristics

Run in 1 MN5 GPP-HighMem partition
node:

2x Intel Xeon Platinum 8480+ 56C 2GHz
1024GB of RAM memory
2x54 OpenMP threads within the socket
2 MPI processes (1x socket)

Mesh: 220x880x220 (42.6M cells)

400k cells per CPU

Run in three different discretizations for
the Laplacian operator: 7p,13p, and 27p

Influence of Poisson solver iterations:
(150, 350, 550)

Run for 1, 2, 4, and 8 simultaneous flow
states

9 / 16
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Numerical tests in CPU
Results. Speed-up for SpMM
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Numerical tests in CPU
Results. Speed-up for iteration
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Numerical tests in CPU
Results. Roofline analysis
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1x MareNostrum 5 GPP Node:

Peak performance: ≈ 7155.86 GFLOP/s
Memory bandwidth: 307.2 GB/s
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Numerical tests in GPU
Construction of test case

Characteristics

Run in 1 JFF GPU node:

1x Nvidia A100 80GB PCIe
2x Intel Xeon Gold 6442Y 48C
1024GB of RAM memory
96 OpenMP threads for preprocessing
1 MPI process for computing + OpenCL

Mesh: 176x704x176 (21M cells)

Run in three different discretizations for
the Laplacian operator: 7p,13p, and 27p

Run for 1, 2, 4 simultaneous flow states

13 / 16
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Numerical tests in GPU
Results. Speed-up for SpMM
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Numerical tests in GPU
Results. Roofline analysis
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System properties

1x Nvidia A100 80GB PCIe:

Peak performance: ≈ 9700 GFLOP/s
Memory bandwidth: 1935 GB/s
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Conclusions

Concluding remarks

Method to exploit repeated block structures is presented, with PiT as an example

Implementation in TFA+HPC2 allows converting SpMV to SpMM without modifying call

Ready to use in both CPU and GPU architectures

Results with CPU and GPU as expected, within upper and lower bounds for all cases.

As GPUs are loaded as much as possible, some latency issues reduces performance for
higher nnz.
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