Enabling lighter and faster simulations with repeated matrix blocks

J. Plana-Riu¹, F.X. Trias¹, G. Colomer¹, À. Alsalti-Baldellou², X. Álvarez-Farré³, A. Oliva¹

 ¹Heat and Mass Transfer Technological Centre Technical University of Catalonia
 ²Department of Civil, Environmental and Architectural Engineering (ICEA) University of Padova
 ³ High-Performance Computing and Visualization Team SURF

35th Parallel Computational Fluid Dynamics (ParCFD) International Conference Bonn, Germany Sept. 3rd, 2024

Introduction	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
•0					
Introduct	ion				

One big problem...

Introduction	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
00	0000		0000	000	
Introduct	ion				

One big problem...

Existing resources...

- Computational power from current top HPC systems is in the exaflop range...
- Sparse algebra, however...
 - has a low arithmetic intensity
 - is limited by memory bandwidth
- HPCG is the benchmark for us.

Introduction	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
00	0000		0000	000	
Introduct	ion				

One big problem...

Existing resources...

- Computational power from current top HPC systems is in the exaflop range...
- Sparse algebra, however...
 - has a low arithmetic intensity
 - is limited by memory bandwidth
- HPCG is the benchmark for us.

Possible solutions...

• Improving arithmetic intensity!

Introduction	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
00	0000		0000	000	
Introducti	on				

- Memory-bound
- Compute-bound

¹S. Williams et al. "Roofline: an insightful visual performance for multicore architectures," Commun. ACM 52, 2009

Introduction	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
$\circ \bullet$	0000		0000	000	
Introduction	on				

- Memory-bound
- Compute-bound

What is the arithmetic (or operational) intensity?

 Ratio between the number of operations and the amount of data that has to be handled (sent/received)

¹S. Williams et al. "Roofline: an insightful visual performance for multicore architectures," Commun. ACM 52, 2009

Introduction	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
00	0000		0000	000	
Introduc	tion				
Arithmetic inter	nsity				

- Memory-bound
- Compute-bound

What is the arithmetic (or operational) intensity?

 Ratio between the number of operations and the amount of data that has to be handled (sent/received)

$$\begin{pmatrix} A \\ A \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \qquad A(u_1 \ u_2) \\ 2 \text{ SpMV} \qquad 1 \text{ SpMM with 2 RHS}$$

¹S. Williams et al. "Roofline: an insightful visual performance for multicore architectures," Commun. ACM 52, 2009

Introduction	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
00	0000		0000	000	
Introduc	tion				
Arithmetic inter	nsity				

- Memory-bound
- Compute-bound

What is the arithmetic (or operational) intensity?

 Ratio between the number of operations and the amount of data that has to be handled (sent/received)

Oper.	# Mat.	# Vec. sent	# Vec. recv	# Ops
2× SpMV	2	2	2	2
1× 2-SpM	1 1	2	2	2
(Oper. Eq	uivalent arithmet	ic intensity**	
2> 1×	< SpMV 2-SpMM	2/(2+2+2) 2/(1+2+2)	=1/3 =2/5	

¹S. Williams et al. "Roofline: an insightful visual performance for multicore architectures," Commun. ACM 52, 2009

	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
00	0000		0000	000	
Repeated m	natrix blocks				

• CFD simulations are full of sparse matrix-vector products (SpMV):

•
$$u^{n+1} = u^{*,n+1} - G\psi^{n+1}$$

• $u^*_i = u^n + \Delta t \sum_{i=1}^{i-1} a_{ij}(Du_j - C(u_j)u_j)$

•
$$\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \mathbf{A} \mathbf{p}_k$$

• ...

Following the previous example...

- If some repeated matrrix block structures are present SpMV can be translated to SpMM:
 - Symmetries
 - Repeated geometry patterns
 - Ensemble averaging parallel-in-time

	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
00	0000		0000	000	
Repeated m	natrix blocks				

• CFD simulations are full of sparse matrix-vector products (SpMV):

•
$$u^{n+1} = u^{*,n+1} - G\psi^{n+1}$$

• $u_i^* = u^n + \Delta t \sum_{i=1}^{i-1} a_{ij} (Du_j - C(u_j)u_j)$

•
$$\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \overline{\mathbf{A}} \mathbf{p}_k$$

• ...

Following the previous example...

- If some repeated matrrix block structures are present SpMV can be translated to SpMM:
 - Symmetries
 - Repeated geometry patterns
 - Ensemble averaging parallel-in-time

00	0000	0	0000	000	0
	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions

Ensemble averaging parallel-in-time

Encomple	voraging nor	allal in time			
00	0000	0	0000	000	0
	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions

Encomple		allal in time			
00	6000	0	0000	000	0
	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions

Ensemble averaging parallel-in-time

Ensemble average
$$U_x = \frac{1}{m} \sum_{i=1}^m \langle u_{x,i} \rangle = \frac{1}{m} \sum_{i=1}^m \frac{1}{T - T_T} \int_{T_T}^T u_{x,i} dt$$

m simulations as a single one...

$$\mathbb{C} = I_m \otimes C$$
$$\mathbb{D} = I_m \otimes D$$
$$\mathbb{G} = I_m \otimes G$$

	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
	0000				
Ensemble	e averaging r	parallel-in-tin	ne		

$$rac{du}{dt} + C(u)u = -G
ho + Du
ightarrow rac{dU}{dt} + \mathbb{C}(U)U = -\mathbb{G}P + \mathbb{D}U$$

- Block structures appear in $\mathbb{C}, \mathbb{G}, \mathbb{D}$
- SpMV's can be translated to SpMM!
 - Increases the arithmetic intensity

	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
00	0000		0000	000	
Ensemble a	veraging par	allel-in-time			

$$rac{du}{dt} + C(u)u = -G
ho + Du
ightarrow rac{dU}{dt} + \mathbb{C}(U)U = -\mathbb{G}P + \mathbb{D}U$$

- Block structures appear in $\mathbb{C}, \mathbb{G}, \mathbb{D}$
- SpMV's can be translated to SpMM!
 - Increases the arithmetic intensity

Encomple	Vokoring nok	allal in time			
00	0000		0000	000	
	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions

Ensemble averaging parallel-in-time

$$rac{du}{dt} + C(u)u = -Gp + Du
ightarrow rac{dU}{dt} + \mathbb{C}(U)U = -\mathbb{G}P + \mathbb{D}U$$

- Block structures appear in $\mathbb{C}, \mathbb{G}, \mathbb{D}$
- SpMV's can be translated to SpMM!
 - Increases the arithmetic intensity
 - Increases performance \rightarrow speed-up!

Ensemble	averaging r	parallel-in-tim	e		
00	0000	0	0000	000	0
Introduction	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions

Generation of speed-up

- Speed-up in SpMV is guaranteed by increasing the AI
- How does this translate to the whole simulation and iteration?
 - T_T will be simulated *m* times...
 - Speed-up in T_A has to be big enough!

²B.I. Krasnopolsky, "An approach for accelerating incompressible turbulent flow simulations based on simultaneous modelling of multiple ensembles," *Comput. Phys. Commun.* **229**, 2018

Ensemb	le averaging i	parallel-in-tin	ne		
00	0000	0	0000	000	0
Introduction	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions

Generation of speed-up

- Speed-up in SpMV is guaranteed by increasing the AI
- How does this translate to the whole simulation and iteration?
 - T_T will be simulated *m* times...
 - Speed-up in T_A has to be big enough!

Estimation of simulation speed-up²

$$P_m = \frac{1+\beta}{m+\beta} \frac{5m}{5m-3\theta(m-1)}$$

- Speed-up of the iteration, $P_{m,ite}$
- Extension to the whole simulation

²B.I. Krasnopolsky, "An approach for accelerating incompressible turbulent flow simulations based on simultaneous modelling of multiple ensembles," *Comput. Phys. Commun.* **229**, 2018

Ensemb	le averaging i	parallel-in-tim	ne		
00	0000	0	0000	000	0
Introduction	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions

Generation of speed-up

- Speed-up in SpMV is guaranteed by increasing the AI
- How does this translate to the whole simulation and iteration?
 - T_T will be simulated *m* times...
 - Speed-up in T_A has to be big enough!

Estimation of simulation speed-up²

$$P_m = \frac{1+\beta}{m+\beta} \frac{5m}{5m-3\theta(m-1)}$$

- Speed-up of the iteration, $P_{m,ite}$
- Extension to the whole simulation

²B.I. Krasnopolsky, "An approach for accelerating incompressible turbulent flow simulations based on simultaneous modelling of multiple ensembles," *Comput. Phys. Commun.* **229**, 2018

	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
00	0000	•	0000	000	
Methodo	ology				

Differentially heated cavity of aspect ratio 4

• Semi-discrete governing equations

$$M \boldsymbol{u}_s = \boldsymbol{0}_c,$$

$$\Omega \frac{d\boldsymbol{u}_{c}}{dt} + C(\boldsymbol{u}_{s})\boldsymbol{u}_{c} - \frac{\Pr}{\operatorname{Ra}^{1/2}} D\boldsymbol{u}_{c} + \Omega G_{c}\boldsymbol{p}_{c} + \Omega \boldsymbol{f}_{c} = \boldsymbol{0}_{c},$$
$$\Omega \frac{d\boldsymbol{\theta}_{c}}{dt} + C(\boldsymbol{u}_{s})\boldsymbol{\theta}_{c} - \frac{1}{\operatorname{Ra}^{1/2}} D\boldsymbol{\theta}_{c} = \boldsymbol{0}_{c}$$

- 3rd-order Heun Runge-Kutta³, SAT⁴
- Ra=10¹⁰, Pr=0.71
- $f_c = (0, \Pr{\theta}, 0)$

⁴J. Plana-Riu et al, "Cost-vs-accuracy analysis of self-adaptive time-integration methods," 10th THMT, 2023

	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
			0000		
Numerical	tests in CPU				

- Run in 1 MN5 GPP-HighMem partition node:
 - 2x Intel Xeon Platinum 8480+ 56C 2GHz
 - 1024GB of RAM memory
 - 2x54 OpenMP threads within the socket
 - 2 MPI processes (1× socket)
- Mesh: 220x880x220 (42.6M cells)
 - 400k cells per CPU
- Run in three different discretizations for the Laplacian operator: 7p,13p, and 27p
- Influence of Poisson solver iterations: (150, 350, 550)
- Run for 1, 2, 4, and 8 simultaneous flow states

	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
			0000		
Numerical	tests in CPU				

- Run in 1 MN5 GPP-HighMem partition node:
 - 2x Intel Xeon Platinum 8480+ 56C 2GHz
 - 1024GB of RAM memory
 - 2x54 OpenMP threads within the socket
 - 2 MPI processes (1× socket)
- Mesh: 220x880x220 (42.6M cells)
 - 400k cells per CPU
- Run in three different discretizations for the Laplacian operator: 7p,13p, and 27p
- Influence of Poisson solver iterations: (150, 350, 550)
- Run for 1, 2, 4, and 8 simultaneous flow states

	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
			0000		
Numerical	tests in CPU				

- Run in 1 MN5 GPP-HighMem partition node:
 - 2x Intel Xeon Platinum 8480+ 56C 2GHz
 - 1024GB of RAM memory
 - 2x54 OpenMP threads within the socket
 - 2 MPI processes (1× socket)
- Mesh: 220x880x220 (42.6M cells)
 - 400k cells per CPU
- Run in three different discretizations for the Laplacian operator: 7p,13p, and 27p
- Influence of Poisson solver iterations: (150, 350, 550)
- Run for 1, 2, 4, and 8 simultaneous flow states

	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
			0000		
Numerical	tests in CPU	J			

Results. Speed-up for SpMM

•	•	٠
•	•	٠
•	•	٠

	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
			0000		
Numerical t	cests in CPU				

Results. Speed-up for iteration

•	•	٠
٠	•	•
•	•	•

	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
			0000		
Numerical	tests in CPU				

Results. Roofline analysis

System properties

- 1x MareNostrum 5 GPP Node:
 - Peak performance: \approx 7155.86 GFLOP/s
 - Memory bandwidth: 307.2 GB/s

	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
				000	
Numerical	tests in GPU				

- Run in 1 JFF GPU node:
 - 1× Nvidia A100 80GB PCIe
 - 2x Intel Xeon Gold 6442Y 48C
 - 1024GB of RAM memory
 - 96 OpenMP threads for preprocessing
 - 1 MPI process for computing + OpenCL
- Mesh: 176×704×176 (21M cells)
- Run in three different discretizations for the Laplacian operator: 7p,13p, and 27p
- Run for 1, 2, 4 simultaneous flow states

	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
				000	
Numerical t	tests in GPU				

Results. Speed-up for SpMM

•	•	٠
٠	•	•
٠	•	٠

	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
				000	
Numerical	tests in GPU				

Results. Roofline analysis

System properties

- 1x Nvidia A100 80GB PCIe:
 - Peak performance: \approx 9700 GFLOP/s
 - Memory bandwidth: 1935 GB/s

	SpMV to SpMM	Methodology	Numerical tests in CPU	Numerical tests in GPU	Conclusions
00	0000		0000	000	•
Conclusio	ons				

Concluding remarks

- Method to exploit repeated block structures is presented, with PiT as an example
- \bullet Implementation in TFA+HPC² allows converting SpMV to SpMM without modifying call
- Ready to use in both CPU and GPU architectures
- Results with CPU and GPU as expected, within upper and lower bounds for all cases.
- As GPUs are loaded as much as possible, some latency issues reduces performance for higher nnz.