
ParCFD2024
35th International Conference on Parallel Computational Fluid Dynamics

Sep 02-04 2024, Bonn, Germany

A PORTABLE ALGEBRAIC IMPLEMENTATION FOR
RELIABLE OVERNIGHT INDUSTRIAL LES

M. Mosqueda-Otero1, A. Alsalti-Baldellou1,2, X. Álvarez-Farré3, J.
Plana-Riu1, G. Colomer1, F. X. Trias1, and A. Oliva1

1 Universitat Politècnica de Catalunya - BarcelonaTech, Heat and Mass Transfer Technological
Center, Carrer de Colom 11, 08222 Terrassa (Barcelona), Spain

e-mail: marcial.francisco.mosqueda@upc.edu

2 Department ICEA, University of Padova, Via Francesco Marzolo, 9, 35131 Padova PD, Italy

3 High-Performance Computing Team - SURF, Science Park 140, 1098 XG Amsterdam, The
Netherlands

Key words: MPI+OpenMP, OpenCL, Heterogeneous computing, Large-Eddy Simula-
tion, Overnight industrial applications

Abstract. The present work aims to assess the feasibility of large-scale simulations
focusing on industrial applications. A symmetry-preserving discretization method for
unstructured collocated grids is applied for LES simulations of turbulent flows. It ensures
stability without introducing artificial dissipation and maintains cross-platform portability
by relying on a minimal set of algebraic kernels. Challenges such as the low arithmetic
intensity of sparse linear algebra and efficient computation are addressed. Finally, a
scalability analysis of the algorithm under MPI-only vs. MPI+OpenMP parallelization
paradigms and GPU architectures is presented, validating its effectiveness in enhancing
parallel computational efficiency

1 INTRODUCTION

The continuous development of novel numerical methods and the rapid evolution of
high-performance computing (HPC) systems has led to the increasing integration of com-
putational fluid dynamics (CFD) into different industrial processes. However, CFD’s
progress faces obstacles, as early implementations struggled with the formerly compute-
bound nature of processors, leading to the application of compute-centric programming
models. Processor design evolved to overcome this limitation, leading to a disparity be-
tween computational power and memory bandwidth; as a result, the former grows faster,
creating the need for intricate memory hierarchies that complicate traditional program
optimization. Moreover, emerging APIs like CUDA, OpenCL, and HIP have made it
challenging to transfer legacy codes to modern hardware; hence, porting algorithms and
applications have become essential. On the other hand, conventional numerical methods
in use throughout the industry, mainly centered in RANS models, struggle to meet the
demands of more precise but expensive models, like LES or DNS. In this regard, the

M. Mosqueda-Otero et al.

thoroughly conservative discretization method for unstructured grids proposed by [1] is
adopted using TermoFluids Algebraic (TFA), our in-house code, constituting a novel and
robust HPC2 approach that can be easily implemented in existing open-source codes [2,
3] and hybrid supercomputers.

While computational power has improved, the time and resources required for detailed
simulations remain a significant bottleneck. Achieving large-scale simulations is crucial
for meeting industry demands for rapid decision-making, product development cycles,
and broadening CFD industrial application fields. Therefore, our research aims to ensure
the integration of modern CFD methodologies into the industry, allowing precise and
accurate simulations of complex processes while efficiently harvesting available resources
and reducing simulation costs under a limited timeframe.

2 Portability for CFD

Constructing codes based on a minimal set of kernels has become essential for ensuring
portability, optimization, and code maintenance, especially given the diverse range of
computational architectures and vendors. Additionally, the hybrid nature of modern
HPC systems imposes further challenges due to the need to efficiently utilize processors
and parallel accelerators, often requiring heterogeneous computations and complex data
exchanges between them. However, traditional CFD codes typically rely on intricate data
structures and computational routines, posing significant barriers to achieving portability.
Therefore, a response centered on algorithms that rely on algebraic kernels, such as the
sparse matrix-vector product (SpMV), the linear combination of vectors (axpy), an element-
wise product of vectors (axty), and the dot product of vectors, emerge as solutions [3].

Code portability, optimization, and scalability are simplified by requiring minimal al-
gebraic kernels. Nevertheless, this approach introduces two challenges and constraints:
(i) computational challenges, including the low arithmetic intensity of the SpMV opera-
tion. This issue can be mitigated by employing the more computationally intensive sparse
matrix-matrix product (SpMM), which proves beneficial in various scenarios whenever deal-
ing with matrices, Â ∈ RN×N , decomposable as the Kronecker product of a diagonal
matrix, C ≡ diag(c) ∈ RK×K , and a sparse matrix, A ∈ RN/K×N/K , i.e., Â = C ⊗ A.
Hence:

y = Âx =⇒ (y1, . . . ,yK) = A (c1x1, . . . , cKxK) , (1)

where xi,yi ∈ RN/K . Replacing the SpMV with SpMM in such situations significantly
reduces memory accesses and the memory footprint of operators by recycling matrix co-
efficients, and (ii) algorithmic challenges emerge, requiring, for instance, the re-definition
of boundary conditions, which can be naturally addressed by defining them into an affine
transformation, such as:

φh → Aφh + bh, (2)

facilitates an algebraic treatment suitable for explicit and implicit time integration meth-
ods [4].

As proposed by [5], a suitable approach to accelerate any Poisson’s solver by exploiting
domain symmetries. Where an adequate ordering of the unknowns led to the replacement

M. Mosqueda-Otero et al.

of SpMV operations with SpMM, with an overall increase of compute-intensive kernel per-
formance by 2.5x and a considerable reduction of the solver‘s footprint and setup costs,
which potentially expanded its application to large-scale simulations.

3 Algorithm scalability analysis

Numerical experiments were designed to study TFA’s base algorithm performance un-
der different parallel paradigms by comparing MPI-only, centered on assigning one task
per CPU-core, vs. MPI+OpenMP, based on 2 MPI process and 56 multithreaded exe-
cutions, which allows for reducing the communication overheads due to its shared mem-
ory concept. In addition, a scalability analysis on hybrid HPC systems is possible due
to TFA’s underlying structure (based on minimal algebraic kernels), which delivers ex-
tended code portability for broad GPU hardware. In addition, a roofline model presents
the implementation performance analysis.

A turbulent channel flow is solved by a conjugate gradient solver with a Jacobi precon-
ditioner for Poisson‘s equation with an explicit time integration scheme with a variable
time step. As the main focus relies on measuring TFA+HPC2 kernels scalability, only 10
time-steps are performed for each case with a constraint of a maximum of 800 iterations.
Finally, the solution considers the entire domain without exploiting symmetries, leaving
SpMV, axpy, axty, and the dot product as the main algebraic kernels.

1 2 4 8 16 32 64 128
Nodes

1x

2x

4x

8x

16x

32x

64x

128x

Sp
ee

du
p

MPI-Only
MPI+OpenMP
70% - 100% Efficiency region

16 32 64 128 200
Nodes

1x

2x

4x

8x

16x

Sp
ee

du
p

MPI-Only
MPI+OpenMP
70% - 100% Efficiency region

Figure 1: MPI-only vs MPI+OpenMP strong scalability; with a 350× 480× 350 - 58.8M
CVs - grid (left plot) and a 800× 1470× 800 - 940.8M CVs - grid (right plot)

MPI-only and MPI+OpenMP tests were conducted on the MareNostrum 5 GPP su-
percomputer at BSC. Experiments run on nodes equipped with two Intel Xeon Platinium
8480+ (56 cores, 2 GHz, 105 MB L3 cache, and 307.2 GB/s memory bandwidth) with a
total of 256 GB of RAM and interconnected through ConnectX-7 NDR200 Infinity Band.

Preliminary results analyze TFA’s strong and weak scalability under both parallel
paradigms (MPI-only and MPI+OpenMP). Figure 1 shows the strong scalability analysis
for two baselines: (i) 1 node (left plot) with a 305×480×350 grid and (ii) 16 nodes (right

M. Mosqueda-Otero et al.

plot) with a 800 × 1470 × 800 grid. Delivering a base workload of 525k control volumes
(CV) per CPU-core. The analysis presents a significant super-linear speedup for hybrid
processes with a fairly repeatable pattern over different baselines due to assumed cache
effect. Additionally, Figure 2 presents a weak scalability analysis for the MPI+OpenMP
test, showing an 11% drop in performance for 200 nodes (concerning a 16-node baseline).

16 32 64 128 200
Nodes

0.25

0.5

0.75

1

Ef
fic
ie
nc
y

Weak scalability
90% - 100% Efficiency region

Figure 2: MPI+OpenMP weak scalability with 525k CV per CPU-core; starting with 16
nodes (1792 CPU-cores) up to 200 nodes (22400 CPU-cores)

In order to measure the implementation performance, an equivalent arithmetic intensity
(AIeq) and equivalent Performance (Peq) were defined by applying a weighted average:

AIeq =

∑
k∈K αkFLOPSk∑
k∈K αkBYTESk

, (3)

and

Peq =

∑
k∈K PkNk∑
k∈K Nk

, (4)

where K is the set of kernels (K = {SpMV, axpy, axty, dot}), Nk and Pk corresponds
with the number of operations and the performance of each kernel, respectively, while
αk, FLOPSk, and BYTESk represents the operations ratio, the number of floating-point
operations, and the number of memory transfers for each kernel, respectively.

Further, AISpMV is computed by the expression proposed by [5]:

AISpMV =
2nnz(A) + 1

8nnz(A) + 4nnz(A) + 4(n+ 1) + 8n+ 8m+ 8
, (5)

where nnz(A), n and m correspond with the number of non-zeros, 7 in the current imple-
mentation, and the number of rows and columns of matrix A, respectively.

Figure 3 presents the roofline model analysis for the TFA+HPC2 equivalent perfor-
mance. Showing that the performance lies in the memory-bound region with an AIeq of

M. Mosqueda-Otero et al.

≈ 0.125 and a marked gap between the supercomputer peak performance (Ppeak) and the
Peq of the implementation. On the other hand, the equivalent performance shows how
efficiently TFA+HPC2 uses the resources for its arithmetic intensity as the performance
point is closely located to the memory line bound.

10−2 10−1 100 101 102 103
Arithmetic intensity (AI) [FLOPS/byte]

101

102

103

104

Pe
rfo

rm
an

ce
 (P

) [
GF

LO
PS

]

AIeq ≈ 0.125
Peq ≈ 29.077

TFA+HPC2 eq+ivalent pe(fo(mance

Figure 3: Roofline model analysis of TFA+HPC2 on Marenostrum 5 GPP supercomputer;
using 1 node (112 CPU-cores) and 350× 480× 350 - 58.8M CVs - grid

This work will be expanded by executing large scalability tests on GPU-accelerated
nodes (under the OpenCL framework). In addition, large-scale urban simulations will
measure performance and simulation time, exploiting domain symmetries to improve the
solver’s performance by replacing SpMV operations with SpMM. Moreover, GPU-accelerated
nodes test will be conducted on the Snellius supercomputer at SURF on nodes equipped
with two Intel Xeon Platinium 8360Y (36 cores, 2.4 GHz, 54 MB L3 cache, and 204.8 GB/s
memory bandwidth) with 512 GB of RAM, and interconnected through two ConnectX-6
HDR100 cards.

Acknowledgements

This work is supported by the Ministerio de Economı́a y Competitividad, Spain,
SIMEX project (PID2022-142174OB-I00). M.MO. is supported by the Catalan Agency
for Management of University and Research Grants (2024 FI-1 00684). In addition, J.PR
is also supported by the Catalan Agency for Management of University and Research
Grants (2022 FI B 00810). Calculations were performed on the MareNostrum 5 GPP
supercomputer at the BSC. The authors thankfully acknowledge these institutions.

References

[1] F. X. Trias, O. Lehmkuhl, A. Oliva, C.D. Pérez-Segarra, and R.W.C.P. Verstap-
pen. “Symmetry-preserving discretization of Navier-Stokes equations on collocated
unstructured meshes”. In: Journal of Computational Physics 258 (2014), pp. 246–
267.

M. Mosqueda-Otero et al.

[2] E. Komen, J. A. Hopman, E. M. A. Frederix, F. X. Trias, and R. W. C. P. Verstap-
pen. “A symmetry-preserving second-order time-accurate PISO-based method”. In:
Computers & Fluids 225 (2021), p. 104979.

[3] X. Álvarez-Farré, A. Gorobets, F. X. Trias, R. Borrell, and G. Oyarzun. “HPC2 – A
fully portable algebra-dominant framework for heterogeneous computing. Application
to CFD”. In: Computers & Fluids 173 (2018), pp. 285–292.

[4] À. Alsalti-Baldellou, G. Colomer, J. A. Hopman, X. Álvarez-Farré, A. Gorobets,
F. X. Trias, C. D. Pérez-Segarra, and A. Oliva. “Reliable overnight industrial LES:
challenges and limitations. Application to CSP technologies”. In: 14th International
ERCOFTAC Symposium on Engineering, Turbulence, Modelling and Measurements:
6th-8th September 2023, Barcelona, Spain: proceedings. European Research Commu-
nity on Flow, Turbulence, and Combustion (ERCOFTAC). 2023.

[5] À. Alsalti-Baldellou, X. Álvarez-Farré, F. X. Trias, and A. Oliva. “Exploiting spatial
symmetries for solving Poisson’s equation”. In: Journal of Computational Physics
486 (2023), p. 112133.

	INTRODUCTION
	Portability for CFD
	Algorithm scalability analysis

