A portable algebraic implementation for reliable overnight industrial LES

M. Mosqueda-Otero¹, À. Alsalti-Baldellou^{1,2}, X. Álvarez-Farré³, J. Plana-Riu¹, G. Colomer¹, F.X. Trias¹, A. Oliva¹

 $¹$ Heat and Mass Transfer Technological Centre, Universitat Politècnica de Catalunya, Spain</sup> ² Department of Information Engineering, University of Padova, Italy High-Performance Computing Team, SURF, The Netherlands

> 35th Parallel CFD International Conference 2024 Sep 2^{nd} - 4^{th} , 2024 Bonn, Germany

GPU-CPU hybrid architecture²

Motivation

The continuous evolution of hardware, coupled with the widespread adoption of accelerators across various tech domains, has driven the development of modern hybrid HPC architectures.

Intel Xeon 4th **gen CPU architecture**¹

 $1D$. Coyle et al. Maximizing vCMTS Data Plane Performance with 4th Gen Intel® Xeon® Scalable Processor Architecture. July 2023

²U. Milic et al. "Beyond the socket: NUMA-aware GPUs". In: Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture. 2017. DOI: [10.1145/3123939.3124534](https://doi.org/10.1145/3123939.3124534)

GPU-CPU hybrid architecture²

Motivation

The continuous evolution of hardware, coupled with the widespread adoption of accelerators across various tech domains, has driven the development of modern hybrid HPC architectures.

Intel Xeon 4th **gen CPU architecture**¹

• How can we achieve portable CFD codes for different architectures and hardware vendors?

¹Coyle et al., [Maximizing vCMTS Data Plane Performance with 4th Gen Intel](#page-1-1)[®] Xeon[®] Scalable Processor **[Architecture](#page-1-1)**

²Milic et al., ["Beyond the socket: NUMA-aware GPUs"](#page-1-2)

TFA+HPC² presents thoroughly conservative discretization methods³ with a set of algebradominant kernels⁴, easily portable to modern HPC architectures

Main HPC² **kernels**

³F. X. Trias et al. "Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured meshes". In: Journal of Computational Physics 258 (2014), pp. 246-267 ⁴X. Álvarez-Farré et al. "HPC² – A fully portable algebra-dominant framework for heterogeneous computing. Application to CFD". In: Computers & Fluids 173 (2018), pp. 285-292

TFA+HPC² presents thoroughly conservative discretization methods³ with a set of algebradominant kernels⁴, easily portable to modern HPC architectures

Main HPC² **kernels**

Do algebra-based implementations enable efficient portability of industrial CFD?

 $3F. X.$ Trias et al., ["Symmetry-preserving discretization of Navier-Stokes equations on collocated](#page-3-1) [unstructured meshes"](#page-3-1)

 $4X$. Álvarez-Farré et al., "HPC² [– A fully portable algebra-dominant framework for heterogeneous](#page-3-2) [computing. Application to CFD"](#page-3-2)

Framework

Base case

- **O** Turbulent channel flow
- Using a Conjugate Gradient solver with a Jacobi preconditioner
- With an explicit time integration scheme
- Variable time-step
- Solving 10 time steps with a maximum of 800 iterations

CPU system

- **•** Strong and Weak scalability
- **Performed in Marenostrum 5 GPP at BSC**
	- CPU: Intel Xeon Platinum 8480+ $(2 \times)$
- Focus on MPI-Only vs. MPI+OpenMP

GPU system

- **O** Strong and Weak scalability
- **Performed in Snellius GPU at SURF**
	- CPU: Intel Xeon Platinum 8360Y $(2 \times)$
	- GPU: NVIDIA A100-40 GiB HBM2 $(4\times)$
- **•** Focus on OpenCL

[CPU] Strong Scalability

Figure: MPI-Only vs. MPI+OpenMP strong scalability on Marenostrum 5 GPP (1-node baseline)

- OpenMP config: 2 MPI processes with 2 comms threads and 54 computation threads
- **•** Analysis performed
	- 1-node baseline: 112 CPU-cores
- Base workload of 525k CVs per CPU-core Mesh sizes:
	- \bullet 1-node: 350 \times 480 \times 350 58.8M

[CPU] Strong Scalability

Figure: MPI-Only vs. MPI+OpenMP strong scalability on Marenostrum 5 GPP (16-node baseline)

- OpenMP config: 2 MPI processes with 2 comms threads and 54 computation threads
- **•** Analysis performed
	- 1-node baseline: 112 CPU-cores
	- ^a 16-node baseline: 1792 CPU-cores
- Base workload of 525k CVs per CPU-core Mesh sizes:
	- \bullet 1-node: 350 \times 480 \times 350 58.8M
	- \bullet 16-nodes: 800 \times 1470 \times 800 940.8M

[CPU] Weak Scalability

- OpenMP config: 2 MPI processes with 2 comms threads and 54 computation threads
- Starting with 16 nodes (1792 CPU-cores) up to 200 nodes (22400 CPU-cores)
- **•** Base workload of 525k CVs per CPU-core Mesh sizes:
	- \bullet 16 nodes: 800 \times 1470 \times 800 940.8M
	- \bullet 32 nodes: 1200 \times 1960 \times 800 1.88B
	- 64 nodes: $1200 \times 3136 \times 1000 = 3.76B$
	- \bullet 128 nodes: 2000 \times 2352 \times 1600 7.52B
	- \bullet 200 nodes: 2000 \times 2940 \times 2000 11.76B

Figure: MPI+OpenMP weak scalability on Marenostrum 5 GPP

[Introduction](#page-1-0) **[Scalability Analysis](#page-5-0)** [Performance Analysis](#page-11-0) [Conclusion](#page-17-0)

oo **oood** oood ooo analysis Conclusion

[GPU] Strong Scalability

- Config: 4 MPI processes per node (1 MPI per GPU card)
- **•** Analysis performed
	- ^a 1-node baseline: 4 GPUs
- Base workload of 25.6M CVs per GPU Mesh size:
	- \bullet 1-node: $400 \times 640 \times 400$ 102 4M

Figure: GPU strong scalability analysis on Snellius GPU island

[GPU] Weak Scalability

- Config: 4 MPI processes per node (1 MPI per GPU card)
- Starting with 1 node (4 GPUs) up to 16 nodes (64 GPUs)
- Base workload of 25.6M CVs per GPU Mesh sizes:
	- \bullet 1 node: $400 \times 640 \times 400 102.4M$
	- 2 nodes: $800 \times 800 \times 320 = 204.8$ M
	- \bullet 4 nodes: 800 \times 800 \times 640 409 6M
	- \bullet 8 nodes: 800 \times 1280 \times 800 819.2M
	- 16 nodes: $1280 \times 1600 \times 800$ 1.64B

Figure: GPU weak scalability analysis on Snellius GPU island

Parameters

Equivalent Arithmetic Intensity (AIeq)

$$
\text{Al}_{\text{eq}} = \frac{\sum_{k \in K} \alpha_k \text{FLOPS}_k}{\sum_{k \in K} \alpha_k \text{BYTES}_k}
$$

Equivalent Performance (P_{eq})

$$
\mathsf{P}_{eq} = \sum_{k \in K} \alpha_k \mathsf{P}_k
$$

Data Throughput (DT_{eq})

$$
\mathsf{DT}_{eq} = \sum_{k \in K} \alpha_k \mathsf{DT}_k
$$

Where K refers to a set of $HPC²$ kernels

and

$$
\alpha_k = \sum_{k \in K} \frac{\mathsf{N}_k}{\mathsf{N}_{total}}
$$

CPU Performance

Figure: Roofline analysis on Marenostrum 5 GPP; baseline 1 node (112 CPU-cores) with 58.8M CVs grid

CPU Performance

Figure: Hierarchical roofline analysis on Marenostrum 5 GPP; showing 1 node (112 CPU-cores) with 58.8M CVs grid, and 16 nodes (1792 CPU-cores) for MPI+openMP strong scalability results

Figure: Memory bandwidth roofline analysis on Marenostrum 5 GPP; MPI+OpenMP strong scalability data transfer (BW_{eq})

 $[448]$

à

 $[896]$

[CPU-cores]

 1792

RAM Bandwidth: 307.2 GB/s

 $[3584]$

GPU Performance

Figure: Memory bandwidth roofline analysis on Snellius GPU; kernels and equivalent data transfer for 1-node baseline case

" - 85% of HMB2 Bandwidth

GPU Performance

Figure: Hierarchical roofline analysis on Snellius GPU; showing 1 node (4 GPU-cards) with 102.4M CVs grid, and 16 nodes (64 Figure: Hierarchical roofline analysis on Snellius GPU; showing

1.64B CVs grid, and 16 nodes (64 kernels and equivalent data transfer for 16-nodes we

GPU-cards) with 1.64B CVs grid (52 kernels and equivalent data transfe

Figure: Memory bandwidth roofline analysis on Snellius GPU; kernels and equivalent data transfer for 16-nodes weak scalability solution

Energy consumption

Figure: Energy consumption in Watts-sec per time step; normalized by the number of operations and problem size solved

- • TFA+HPC² design improves portability into different HPC architectures.
- Efforts to increase the arithmetic intensity are required to improve its memory-bound behavior.

- TFA+HPC² design improves portability into different HPC architectures.
- Efforts to increase the arithmetic intensity are required to improve its memory-bound behavior.
- CPU systems exhibit superior strong scalability, with the hybrid paradigm (MPI+OpenMP) delivering higher performance than MPI-only, primarily due to the benefits of cache utilization and reduced communication overhead.

- TFA+HPC² design improves portability into different HPC architectures.
- Efforts to increase the arithmetic intensity are required to improve its memory-bound behavior.
- CPU systems exhibit superior strong scalability, with the hybrid paradigm (MPI+OpenMP) delivering higher performance than MPI-only, primarily due to the benefits of cache utilization and reduced communication overhead.
- Despite high power requirements, execution on GPU systems results in energy consumption that is approximately 74% lower than CPU systems.

- \bullet TFA+HPC² design improves portability into different HPC architectures.
- Efforts to increase the arithmetic intensity are required to improve its memory-bound behavior.
- CPU systems exhibit superior strong scalability, with the hybrid paradigm (MPI+OpenMP) delivering higher performance than MPI-only, primarily due to the benefits of cache utilization and reduced communication overhead.
- Despite high power requirements, execution on GPU systems results in energy consumption that is approximately 74% lower than CPU systems.
- Finally, weak scaling analysis delivers great efficiency, showing the capability of this implementation to scale to demanding Industrial applications.

Future work

- To perform large-scale urban simulations leveraging spatial regularities⁵
- Continue exploring strategies to increase GPU computation.

 5\AA . Alsalti-Baldellou et al. "Lighter and faster simulations on domains with symmetries". In: Computers & Fluids 275 (2024), p. 106247. ISSN: 0045-7930. DOI: [https://doi.org/10.1016/j.compfluid.2024.106247](https://doi.org/https://doi.org/10.1016/j.compfluid.2024.106247) Mosqueda-Otero, M [parCFD 2024](#page-0-0) 14 / 15

Thanks for your attention!!!

