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Abstract. We aim to answer the following question: is the complexity of numerically

solving Poisson’s equation increasing or decreasing for very large DNS and LES simula-

tions of incompressible flows? Physical and numerical arguments are combined to derive
power-law scalings at very high Reynolds numbers. Theoretical convergence analysis for
both Jacobi and multigrid solvers defines a two-dimensional phase space divided into two
regions depending whether the number of solver iterations tend to decrease or increase
with the Reynolds number. Numerical results seem to confirm that we are in the latter re-
gion: i.e. in the foreseeable future the numerical complexity of solving Poisson’s equation
will increase and, therefore, better and better preconditioning techniques will be needed.

1 INTRODUCTION: TWO COMPETING EFFECTS

The never-ending increasing capacity of modern HPC systems enables DNS simulations
at higher and higher Reynolds numbers, Re = Ul/ν. The number of grid points, Nx, and
time-steps, Nt, can be estimated with the classical Kolmogorov theory (K41)

NK41
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Lx

∆x
∼

l

η
∼ Re3/4 NK41

t =
tsim
∆t

∼
tl
tη

∼
l

η

u

U
∼ Re3/4Re−1/4 = Re1/2, (1)

where Lx and tsim are the domain size and the time integration period, which are assumed
to be similar to the size of the largest scales, l, and its corresponding characteristic time,
tl ∼ l/U , i.e. Lx ∼ l and tsim ∼ tl. For a DNS, we assume that ∆x ∼ η and ∆t ∼ tη ∼ η/u,
where tη ∼ η/u and u are the characteristic time and velocity of the Kolmogorov scales,
η. Plugging this into the CFL condition, i.e. ∆tconv ∼ ∆x/U and ∆tdiff ∼ ∆x2/ν leads to

N conv
t ∼

tl
∆tconv

∼
l

U

U

lRe−3/4
= Re3/4 Ndiff

t ∼
tl

∆tdiff
∼

l

U

ν

l2(Re−3/4)2
= Re1/2. (2)

Therefore, we can conclude that

∆t/tl ∼ 1/Nt ∼ Reα, (3)

where α = −1/2 for the K41 theory (see Eq. 1) or diffusion dominated (see Eq. 2, right),
and α = −3/4 for convection dominated (see Eq. 2, left). Therefore, higher Re lead to
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Figure 1: Left: illustrative explanation of the two competing effects on the solution of Poisson’s
equation when increasing Re number: time-step, ∆t, decreases whereas the range of scales
increases. Right: {α̃, β} phase space. Solid black line corresponds to ∝ Re0 in Eqs.(15) and (16),
i.e. neutral effect of Re-number in the total number of iterations.

(i) larger meshes and (ii) smaller time-steps, ∆t. These are two competing effects on the
convergence of Poisson’s equation: namely, the former increases the condition number
of the discrete Poisson equation whereas the latter leads to better initial guess. Who is

eventually the winner at very high Re? Read on...

2 ANALYSIS OF THE RESIDUAL OF POISSON’S EQUATION

Although FFT-based direct solvers are very well-suited for canonical flows with peri-
odic directions [1], the forthcoming analysis assumes that multigrid (MG) methods will
eventually be the preferred option for extreme-scale simulations. Then, the next step is
to analyze the residual of the Poisson’s equation as a function of the Reynolds number.
Relevant aspects are twofold: the magnitude and the spectral distribution. To study
them, we consider a fractional step method where u

p is the predictor velocity. Imposing
that ∇ · un+1 = 0, leads to a Poisson equation for pressure, pn+1,

u
n+1 = u

p −∆t∇pn+1 ∇·
=⇒ ∇2pn+1 = 1/∆t∇ · up. (4)

Assuming ∇·un = 0 and taking pn as initial guess, we obtain the following initial residual

r0 = ∇2pn −
1

∆t
∇ · up,n+1 (4)

= 1/∆t
(

∇ · up,n −∇ · up,n+1
)

≈ ∂t∇ · up. (5)

Alternatively, we can also consider r̃0 = ∆tr0. In this case, the residual reads

r̃0 = ∇2p̃n −∇ · up,n+1 (4)
=
(

∇ · up,n −∇ · up,n+1
)

≈ ∆t∂t∇ · up, (6)

where p̃ = p∆t is a pseudo-pressure. Notice that the second residual, r̃0, is more mean-
ingful from a physical point-of-view, since it directly translates how accurately we impose
the incompressibility constraint. Then, recalling that ∇·up can be expressed as follows [2]

∇ · up ≈ ∆t∇ · (u · ∇u) = 2∆tQG, (7)
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leads to
r0 ≈ 2∆t ∂tQG and r̃0 ≈ 2∆t2∂tQG, (8)

where QG = −1/2tr(G2) is the second invariant of the velocity gradient, G ≡ ∇u. There-
fore, smaller ∆t decrease the magnitude of r0 (also r̃0) leading to a better convergence.

On the other hand, increasing Re also leads to finer meshes (see Eq. 1) and, therefore,
to more ill-conditioned systems with a wider and wider range of scales to be resolved.
In the forthcoming analysis, the spectral distribution of the initial residual, r̂0k, plays a
crucial role. In general, we can assume a power-law scaling within the inertial range

∂tQG ∝ kβ =⇒ r̂0k ∝ ∆tpkβ , (9)

where k is the wavenumber and p ∈ {1, 2} depends on the definition of the residual: p = 1
for Eq. (5) and p = 2 for Eq. (6). Then, a power-law scaling for QG can be derived from
Eqs.(4) and (7), and the k−7/3 scaling of the shell-summed squared pressure spectrum [3],

(Q̂G)k ∝ k2(k−7/3)1/2 = k5/6. (10)

Then, the value of β in Eq.(9) can be estimated from the dynamics of the invariants
obtained from the so-called restricted Euler equations [4],

∂tQG = −(u · ∇)QG − 3RG, (11)

where RG = det(G) = 1/3tr(G3) is the third invariant of G. The two terms in the right-
hand-side of this equation are expected to have different power-law scalings. Namely,

( ̂(u · ∇)QG)k ∝ (∇̂QG)k ∝ k(k5/6) = k11/6 and (R̂G)k ∝ (k5/6)3/2 = k5/4, (12)

where the Taylor’s frozen-turbulence hypothesis is applied to approximate (u · ∇)QG,
which is eventually the dominant term in the right-hand-side of Eq.(11). Combining this
with the results obtained in Eqs.(9) and (12) leads to

r̂0k ∝ ∆tpkβ with β = 11/6 and p =

{

1 if r̂ defined as Eq.(5)
2 if r̂ defined as Eq.(6)

(13)

In summary, there are two competing effects (see Figure 1, left) when increasing Re
number: time-step, ∆t, decreases whereas the range of scales increases.

3 ANALYSIS OF THE SOLVER CONVERGENCE AND CONCLUSIONS

We can relate the L2-norm of the residual with the integral of r̂k for all the wavenumbers
using the Parseval’s theorem, i.e. ||r||2 =

∫

Ω
r2dV =

∫ kmax

1
r̂2kdk, where kmax ≈ 1/η ∼

Re3/4. Then, the residual after n iterations can be computed as

||rn||2 =

∫ kmax

1

(

ω̂n
k r̂

0
k

)2
dk

(3)(13)
≈

∫ Re3/4

1

ω̂2n
k Re2α̃k2βdk, (14)
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Figure 2: Compensated spectra for pressure, QG, RG, and the initial solver residual, ro. Results
correspond to forced homogeneous isotropic turbulence at Reλ = 325.

where ω̂k = r̂n+1
k /r̂nk is the convergence ratio of the solver and α̃ = pα. For instance,

for a Jacobi solver, ω̂k = cos(π
2
ρ) where ρ ≡ k/kmax. In this case, using a quadratic

approximation of cos(x) ≈ 1− 4x2/π2 leads to

||rn||2 ≈
Re2(α̃+3/4(β+1/2))

2(2n+ 1)
. (15)

We can extend this analysis for a MG solver with the Jacobi smoother

||rn||2 ≈
Re2(α̃+3/4(β+1/2))

2(2n+ 1)

{(

lmax
∑

l=0

(3/4)2n+1

22l

)

+
1

22lmax+1

}

. (16)

where lmax ∼ log2Nx ∼ (3/4) log2Re is the number of levels. Compared to Eq.(15), MG
is strongly accelerated by the term in brackets, which tends to (3/4)2n. Nevertheless, the
Re-scaling is the same; therefore, the regions defined in the {α̃, β} phase space remain
unchanged (see Figure 1, right). Numerical results displayed in Figure 2 seem to confirm
our theory: namely, the slopes of the invariants QG and RG correspond well with the
values predicted in Eqs.(10) and (12), respectively. More importantly, the slope of the
solver residual, r̂k, fits with the predicted value of β = 11/6 (see Eq.13). Altogether leads
to the preliminary conclusion that the number of iterations tends to increase with Re.
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