An AMG reduction framework for domains with symmetries

Àdel Alsalti-Baldellou^{1,2} Carlo Janna^{2,3} Andrea Franceschini² Gianluca Mazzucco² Xavier Álvarez-Farré⁴ F. Xavier Trias¹

¹Heat and Mass Transfer Technological Center, Polytechnic University of Catalonia

²Department of Civil, Environmental and Architectural Engineering, University of Padova

³M3E s.r.l., http://www.m3eweb.it/

⁴High-Performance Computing and Visualization Team, SURF

SIAM Conference on Parallel Processing for Scientific Computing (PP24) March 5-8 2024 – Baltimore, USA

Mesh symmetries and SpMM

Algebraic Multigrid reduction framework

Concluding remarks

 Context of the work 2 Mesh symmetries and SpMM 3 Algebraic Multigrid reduction framework 4 Concluding remarks

Context of the work $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Mesh symmetries and ${\rm SpMM}$ 000000

Algebraic Multigrid reduction framework

Concluding remarks 000

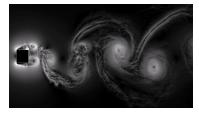
Context of the work

Mesh symmetries and SpMM 000000

Algebraic Multigrid reduction framework 00000

Concluding remarks

CFD applications - 1



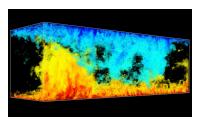


Figure: Simulation of flow around a square cylinder and Rayleigh-Bénard convection.

F.X. Trias et al. (2015). "Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study" in *Computers and Fluids*.

F. Dabbagh et al. (2017). "A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection" in *Physics of Fluids*.

Mesh symmetries and SpMM 000000

Algebraic Multigrid reduction framework 00000

Concluding remarks

CFD applications - 2

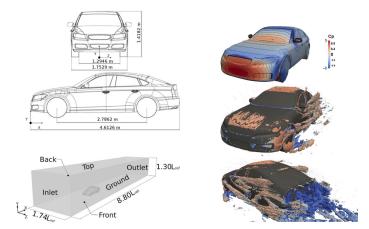


Figure: Simulation of turbulent flow over the DrivAer fastback vehicle model.

D. E. Aljure et al. (2018). "Flow over a realistic car model: Wall modeled large eddy simulations assessment and unsteady effects" in *Journal of Wind Engineering and Industrial Aerodynamics*.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks

CFD applications – 3

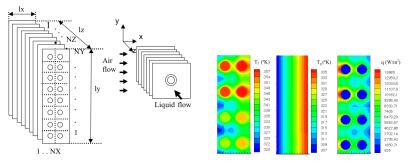


Figure: Simulation of brazed and expanded tube-fin heat exchangers.

L. Paniagua et al. (2014). "Large Eddy Simulations (LES) on the Flow and Heat Transfer in a Wall-Bounded Pin Matrix" in *Numerical Heat Transfer, Part B: Fundamentals.*

Mesh symmetries and SpMM $_{\rm OOOOOO}$

Algebraic Multigrid reduction framework

Concluding remarks

CFD applications – 4

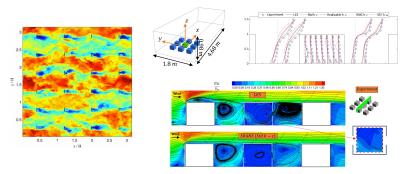


Figure: Simulation of wind plant and array of "buildings".

M. Calaf et al. (2010). "Large eddy simulation study of fully developed wind-turbine array boundary layers" in *Physics of Fluids*.

P. A. Mirzaei (2021). "CFD modeling of micro and urban climates: Problems to be solved in the new decade" in *Sustainable Cities and Society*.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks 000

Poisson's equation in incompressible CFD

Fractional Step Method (FSM)

- $\textbf{9} \hspace{0.1 cm} \text{Evaluate the auxiliar vector field } \mathbf{r}(\boldsymbol{u}^n) \coloneqq -(\boldsymbol{u}\cdot\nabla)\boldsymbol{u} + \nu\Delta\boldsymbol{u}$
- $\textbf{@} \text{ Evaluate the predictor velocity } \boldsymbol{u}^p \coloneqq \boldsymbol{u}^n + \Delta t \left(\tfrac{3}{2} \mathbf{r}(\boldsymbol{u}^n) \tfrac{1}{2} \mathbf{r}(\boldsymbol{u}^{n-1}) \right)$
- **Obtain the pressure field by solving a Poisson equation**:

$$abla \cdot \left(rac{1}{
ho}
abla p^{n+1}
ight) = rac{1}{\Delta t}
abla \cdot oldsymbol{u}^{t}$$

 $\textcircled{O} \text{ Obtain the new divergence-free velocity } \boldsymbol{u}^{n+1} = \boldsymbol{u}^p - \Delta t \nabla p^{n+1}$

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks 000

Poisson's equation in incompressible CFD

Fractional Step Method (FSM)

- $\textbf{9} \hspace{0.1 cm} \text{Evaluate the auxiliar vector field } \mathbf{r}(\boldsymbol{u}^n) \coloneqq -(\boldsymbol{u}\cdot\nabla)\boldsymbol{u} + \nu\Delta\boldsymbol{u}$
- $\textbf{@} \text{ Evaluate the predictor velocity } \boldsymbol{u}^p \coloneqq \boldsymbol{u}^n + \Delta t \left(\tfrac{3}{2} \mathbf{r}(\boldsymbol{u}^n) \tfrac{1}{2} \mathbf{r}(\boldsymbol{u}^{n-1}) \right)$
- **Obtain the pressure field by solving a Poisson equation**:

$$abla \cdot \left(rac{1}{
ho}
abla p^{n+1}
ight) = rac{1}{\Delta t}
abla \cdot oldsymbol{u}^{T}$$

 $\textcircled{O} \text{ Obtain the new divergence-free velocity } \boldsymbol{u}^{n+1} = \boldsymbol{u}^p - \Delta t \nabla p^{n+1}$

Poisson's equation for incompressible single-phase flows

Continuous:

$$\Delta p = \frac{\rho}{\Delta t} \nabla \cdot \boldsymbol{u}^p$$

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks 000

Poisson's equation in incompressible CFD

Fractional Step Method (FSM)

- $\textbf{9} \hspace{0.1 cm} \text{Evaluate the auxiliar vector field } \mathbf{r}(\boldsymbol{u}^n) \coloneqq -(\boldsymbol{u}\cdot\nabla)\boldsymbol{u} + \nu\Delta\boldsymbol{u}$
- $\textbf{@} \text{ Evaluate the predictor velocity } \boldsymbol{u}^p \coloneqq \boldsymbol{u}^n + \Delta t \left(\tfrac{3}{2} \mathbf{r}(\boldsymbol{u}^n) \tfrac{1}{2} \mathbf{r}(\boldsymbol{u}^{n-1}) \right)$
- **Obtain the pressure field by solving a Poisson equation**:

$$abla \cdot \left(rac{1}{
ho}
abla p^{n+1}
ight) = rac{1}{\Delta t}
abla \cdot oldsymbol{u}^{T}$$

 $\textcircled{O} \text{ Obtain the new divergence-free velocity } \boldsymbol{u}^{n+1} = \boldsymbol{u}^p - \Delta t \nabla p^{n+1}$

Poisson's equation for incompressible single-phase flows

Continuous:

$$\Delta p = \frac{\rho}{\Delta t} \nabla \cdot \boldsymbol{u}^p$$

Discrete:

$$Ax = b$$

Mesh symmetries and SpMM ●00000 Algebraic Multigrid reduction framework 00000

Concluding remarks

Mesh symmetries and SpMM

Mesh symmetries and SpMM O●OOOO Algebraic Multigrid reduction framework

Concluding remarks

Meshes with symmetries -1

	★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
(a) 1 symmetry	(b) 2 symmetries

Figure: 2D meshes with varying number of symmetries.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks

Meshes with symmetries -2

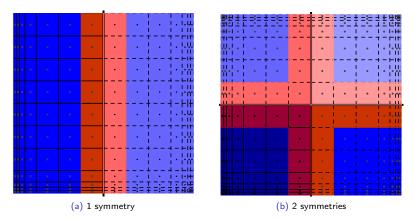


Figure: 2D meshes with varying number of symmetries. Blue: inner nodes, red: interface nodes.

Mesh symmetries and SpMM 000●00 Algebraic Multigrid reduction framework

Concluding remarks

Meshes with symmetries - 3

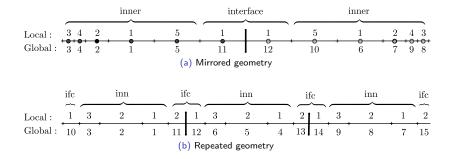
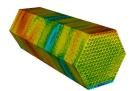


Figure: 1D meshes with a random mirrored/repeated ordering.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks

Using SpMM throughout the simulations -1



E. Merzari et al. (2020). "Wall resolved large eddy simulation of reactor core flows with the spectral element method", in *Nuclear Engineering and Design*.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks

Using SpMM throughout the simulations -1

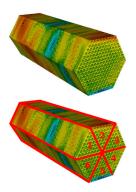


Figure: Pressure field on a 217-pin rod bundle.

E. Merzari et al. (2020). "Wall resolved large eddy simulation of reactor core flows with the spectral element method", in *Nuclear Engineering and Design*.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks

Using SpMM throughout the simulations -1

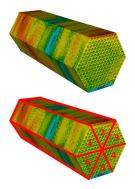


Figure: Pressure field on a 217-pin rod bundle.

E. Merzari et al. (2020). "Wall resolved large eddy simulation of reactor core flows with the spectral element method", in *Nuclear Engineering and Design*.

Applying an "inner-interface" ordering makes the discrete Laplacian satisfy:

$$A = \begin{pmatrix} \bar{K} & \bar{B} \\ \bar{B}^t & \bar{C} \end{pmatrix} \in \mathbb{R}^{n \times n},$$

where $\bar{K} \in \mathbb{R}^{n_{\text{inn}} \times n_{\text{inn}}}$, $\bar{B} \in \mathbb{R}^{n_{\text{inn}} \times n_{\text{ifc}}}$, $\bar{C} \in \mathbb{R}^{n_{\text{ifc}} \times n_{\text{ifc}}}$.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks

Using SpMM throughout the simulations -1

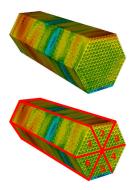


Figure: Pressure field on a 217-pin rod bundle.

Applying an "inner-interface" ordering makes the discrete Laplacian satisfy:

$$A = \begin{pmatrix} \bar{K} & \bar{B} \\ \bar{B}^t & \bar{C} \end{pmatrix} \in \mathbb{R}^{n \times n},$$

where $\bar{K} \in \mathbb{R}^{n_{\text{inn}} \times n_{\text{inn}}}$, $\bar{B} \in \mathbb{R}^{n_{\text{inn}} \times n_{\text{ifc}}}$, $\bar{C} \in \mathbb{R}^{n_{\text{ifc}} \times n_{\text{ifc}}}$.

Then, thanks to the mirrored/repeated ordering:

$$\bar{K} = \mathbb{I}_6 \otimes K$$
 and $\bar{B} = \mathbb{I}_6 \otimes B$.

E. Merzari et al. (2020). "Wall resolved large eddy simulation of reactor core flows with the spectral element method", in *Nuclear Engineering and Design*.

Mesh symmetries and SpMM 00000● Algebraic Multigrid reduction framework

Concluding remarks

Using SpMM throughout the simulations - 2

On a domain with n_b repeated/mirrored subdomains, virtually all operators satisfy structures equivalent to:

$$\bar{H} = \mathbb{I}_{n_b} \otimes H \in \mathbb{R}^{n \times m}$$
 s.t. $H \in \mathbb{R}^{n/n_b \times m/n_b}$.

Mesh symmetries and SpMM 00000● Algebraic Multigrid reduction framework

Concluding remarks

Using SpMM throughout the simulations - 2

On a domain with n_b repeated/mirrored subdomains, virtually all operators satisfy structures equivalent to:

$$\bar{H} = \mathbb{I}_{n_b} \otimes H \in \mathbb{R}^{n \times m}$$
 s.t. $H \in \mathbb{R}^{n/n_b \times m/n_b}$.

Then, given $x \in \mathbb{R}^m$, the products by \overline{H} can be accelerated by replacing:

$$\begin{array}{ccc} {\rm SpMV:} & \begin{pmatrix} H & & \\ & \ddots & \\ & & H \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_{n_b} \end{pmatrix} \text{ with SpMM: } H\left(x_1 \ldots x_{n_b}\right) \end{array}$$

Mesh symmetries and SpMM 00000● Algebraic Multigrid reduction framework

Concluding remarks

Using SpMM throughout the simulations -2

On a domain with n_b repeated/mirrored subdomains, virtually all operators satisfy structures equivalent to:

$$\bar{H} = \mathbb{I}_{n_b} \otimes H \in \mathbb{R}^{n \times m}$$
 s.t. $H \in \mathbb{R}^{n/n_b \times m/n_b}$.

Then, given $x \in \mathbb{R}^m$, the products by \overline{H} can be accelerated by replacing:

$$\begin{array}{ccc} {\rm SpMV:} & \begin{pmatrix} H & & \\ & \ddots & \\ & & H \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_{n_b} \end{pmatrix} \text{ with SpMM: } H\left(x_1 \dots x_{n_b}\right) \end{array}$$

SpMM vs SpMV

- SpMV reads $H \ n_b$ times, whereas SpMM once
- \bar{H} takes n_b times more memory than H

Mesh symmetries and ${\rm SpMM}$ 000000

Algebraic Multigrid reduction framework •0000 Concluding remarks

Algebraic Multigrid reduction framework

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework 0000

Concluding remarks

Right, left and split preconditioning

Let $A \in \mathbb{R}^n$ and $x, b \in \mathbb{R}^n$. Then, given the linear system Ax = b, we can consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the left-preconditioned system is:

 $M^{-1}Ax = M^{-1}b$

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework 0000

Concluding remarks

Right, left and split preconditioning

Let $A \in \mathbb{R}^n$ and $x, b \in \mathbb{R}^n$. Then, given the linear system Ax = b, we can consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the left-preconditioned system is:

$$M^{-1}Ax = M^{-1}b$$

Right preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the right-preconditioned system is:

$$AM^{-1}y = b$$
, where $Mx = y$

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks 000

Right, left and split preconditioning

Let $A \in \mathbb{R}^n$ and $x, b \in \mathbb{R}^n$. Then, given the linear system Ax = b, we can consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the left-preconditioned system is:

$$M^{-1}Ax = M^{-1}b$$

Right preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the right-preconditioned system is:

$$AM^{-1}y = b$$
, where $Mx = y$

Split preconditioning

Given the preconditioner $M^{-1}=M_1^{-1}M_2^{-1}\simeq A^{-1},$ the split-preconditioned system is:

$$M_1^{-1}AM_2^{-1}y = M_1^{-1}b$$
, where $M_2x = y$

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework 0000

Concluding remarks

Right, left and split preconditioning

Let $A \in \mathbb{R}^n$ and $x, b \in \mathbb{R}^n$. Then, given the linear system Ax = b, we can consider the following preconditioning techniques:

Left preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the left-preconditioned system is:

$$M^{-1}Ax = M^{-1}b$$

Right preconditioning

Given the preconditioner $M^{-1} \simeq A^{-1}$, the right-preconditioned system is:

$$AM^{-1}y = b$$
, where $Mx = y$

Split preconditioning

Given the preconditioner $M^{-1}=M_1^{-1}M_2^{-1}\simeq A^{-1},$ the split-preconditioned system is:

$$M_1^{-1}AM_2^{-1}y = M_1^{-1}b$$
, where $M_2x = y$

Thus, preconditioning reduces to operations of the type: $y = M^{-1}x$

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks

AMGR preconditioner

AMGR relies on the following prolongation:

$$P := \begin{pmatrix} \bar{W} \\ \mathbb{I}_{n_c} \end{pmatrix} \in \mathbb{R}^{n \times n_c} \text{ s.t. } \bar{W} \in \mathbb{R}^{n_f \times n_c} \text{ and } \mathbb{I}_{n_c} \in \mathbb{R}^{n_c \times n_c},$$

where n_f and n_c are the number of fine and coarse nodes.

C. Janna and M. Ferronato (2011). "Adaptive pattern research for block FSAI preconditioning" in *SIAM Journal on Scientific Computing*.

G. Isotton et al. (2021). "Chronos: A general purpose AMG solver for high performance computing" in SIAM Journal on Scientific Computing.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks

AMGR preconditioner

AMGR relies on the following prolongation:

$$P := \begin{pmatrix} \bar{W} \\ \mathbb{I}_{n_c} \end{pmatrix} \in \mathbb{R}^{n \times n_c} \text{ s.t. } \bar{W} \in \mathbb{R}^{n_f \times n_c} \text{ and } \mathbb{I}_{n_c} \in \mathbb{R}^{n_c \times n_c},$$

where n_f and n_c are the number of fine and coarse nodes.

Then, we apply a standard AMG to the reduced operator:

$$A_c := P^T \begin{pmatrix} \bar{K} & \bar{B} \\ \bar{B}^t & \bar{C} \end{pmatrix} P$$

C. Janna and M. Ferronato (2011). "Adaptive pattern research for block FSAI preconditioning" in *SIAM Journal on Scientific Computing*.

G. Isotton et al. (2021). "Chronos: A general purpose AMG solver for high performance computing" in *SIAM Journal on Scientific Computing*.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks

AMGR preconditioner

AMGR relies on the following prolongation:

$$P := \begin{pmatrix} \bar{W} \\ \mathbb{I}_{n_c} \end{pmatrix} \in \mathbb{R}^{n \times n_c} \text{ s.t. } \bar{W} \in \mathbb{R}^{n_f \times n_c} \text{ and } \mathbb{I}_{n_c} \in \mathbb{R}^{n_c \times n_c},$$

where n_f and n_c are the number of fine and coarse nodes.

Then, we apply a standard AMG to the reduced operator:

$$A_c := P^T \begin{pmatrix} \bar{K} & \bar{B} \\ \bar{B}^t & \bar{C} \end{pmatrix} P \stackrel{\substack{n_f = n_{\text{inc}} \\ n_c = n_{\text{ifc}}}}{=} \bar{W}^T \bar{K} W + \bar{W}^T \bar{B} + \bar{B}^T \bar{W} + \bar{C}.$$

C. Janna and M. Ferronato (2011). "Adaptive pattern research for block FSAI preconditioning" in *SIAM Journal on Scientific Computing*.

G. Isotton et al. (2021). "Chronos: A general purpose AMG solver for high performance computing" in SIAM Journal on Scientific Computing.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks 000

AMGR preconditioner

AMGR relies on the following prolongation:

$$P := \begin{pmatrix} \bar{W} \\ \mathbb{I}_{n_c} \end{pmatrix} \in \mathbb{R}^{n \times n_c} \text{ s.t. } \bar{W} \in \mathbb{R}^{n_f \times n_c} \text{ and } \mathbb{I}_{n_c} \in \mathbb{R}^{n_c \times n_c},$$

where n_f and n_c are the number of fine and coarse nodes.

Then, we apply a standard AMG to the reduced operator:

$$A_c := P^T \begin{pmatrix} \bar{K} & \bar{B} \\ \bar{B}^t & \bar{C} \end{pmatrix} P \stackrel{\substack{n_f = n_{\text{in}} \\ n_c = n_{\text{ifc}}}}{=} \bar{W}^T \bar{K} W + \bar{W}^T \bar{B} + \bar{B}^T \bar{W} + \bar{C}.$$

The fastest **coarsening** is $n_c = n_{ifc}$, but it results in excessive f-c distances. Hence, to allow for an accurate interpolation, we turn inner nodes into coarse:

- Pick a strength of connection measure
- $\bullet\,$ Filter the resulting adjacency graph, T
- Compute a maximum independent set on T^k .

C. Janna and M. Ferronato (2011). "Adaptive pattern research for block FSAI preconditioning" in *SIAM Journal on Scientific Computing*.

G. Isotton et al. (2021). "Chronos: A general purpose AMG solver for high performance computing" in *SIAM Journal on Scientific Computing*.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks 000

AMGR preconditioner

AMGR relies on the following prolongation:

$$P := \begin{pmatrix} \bar{W} \\ \mathbb{I}_{n_c} \end{pmatrix} \in \mathbb{R}^{n \times n_c} \text{ s.t. } \bar{W} \in \mathbb{R}^{n_f \times n_c} \text{ and } \mathbb{I}_{n_c} \in \mathbb{R}^{n_c \times n_c},$$

where n_f and n_c are the number of fine and coarse nodes.

Then, we apply a standard AMG to the reduced operator:

$$A_c := P^T \begin{pmatrix} \bar{K} & \bar{B} \\ \bar{B}^t & \bar{C} \end{pmatrix} P \stackrel{\substack{n_f = n_{\text{inc}} \\ n_c = n_{\text{ifc}}}}{=} \bar{W}^T \bar{K} W + \bar{W}^T \bar{B} + \bar{B}^T \bar{W} + \bar{C}.$$

The fastest **coarsening** is $n_c = n_{ifc}$, but it results in excessive f-c distances.

Finally, the top-level smoother is:

$$M := \begin{pmatrix} M_{\bar{K}} & \\ & M_{\bar{C}} \end{pmatrix} \in \mathbb{R}^{n \times n}$$

C. Janna and M. Ferronato (2011). "Adaptive pattern research for block FSAI preconditioning" in *SIAM Journal on Scientific Computing*.

G. Isotton et al. (2021). "Chronos: A general purpose AMG solver for high performance computing" in *SIAM Journal on Scientific Computing*.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks 000

AMGR preconditioner

AMGR relies on the following prolongation:

$$P := \begin{pmatrix} \bar{W} \\ \mathbb{I}_{n_c} \end{pmatrix} \in \mathbb{R}^{n \times n_c} \text{ s.t. } \bar{W} \in \mathbb{R}^{n_f \times n_c} \text{ and } \mathbb{I}_{n_c} \in \mathbb{R}^{n_c \times n_c},$$

where n_f and n_c are the number of fine and coarse nodes.

Then, we apply a standard AMG to the reduced operator:

$$A_c := P^T \begin{pmatrix} \bar{K} & \bar{B} \\ \bar{B}^t & \bar{C} \end{pmatrix} P \stackrel{\substack{n_f = n_{\text{inc}} \\ n_c = n_{\text{ifc}}}}{=} \bar{W}^T \bar{K} W + \bar{W}^T \bar{B} + \bar{B}^T \bar{W} + \bar{C}.$$

The fastest **coarsening** is $n_c = n_{ifc}$, but it results in excessive f-c distances.

Finally, the top-level smoother is:

$$M := \begin{pmatrix} M_{\bar{K}} & \\ & M_{\bar{C}} \end{pmatrix} \in \mathbb{R}^{n \times n} \text{ s.t. } M_{\bar{K}} = \mathbb{I}_{n_b} \otimes M_K.$$

C. Janna and M. Ferronato (2011). "Adaptive pattern research for block FSAI preconditioning" in *SIAM Journal on Scientific Computing*.

G. Isotton et al. (2021). "Chronos: A general purpose AMG solver for high performance computing" in *SIAM Journal on Scientific Computing*.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks

Numerical experiments: DrivAer fastback

Table: DrivAer car with 106.4M DOFs on five JFF nodes (2x Intel Xeon 6230).

preconditioner	n_b	coarsening ratio	avg nnzr	its	t-sol (s)	speed-up
AMG	1	0.36	14.7			
AMGR	2	0.14	37.4			

A. I. Heft et al. (2012). "Introduction of a new realistic generic car model for aerodynamic investigations" in SAE International.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks

Numerical experiments: DrivAer fastback

Table: DrivAer car with 106.4M DOFs on five JFF nodes (2x Intel Xeon 6230).

preconditioner	n_b	coarsening ratio	avg nnzr	its	t-sol (s)	speed-up
AMG	1	0.36	14.7	26		
AMGR	2	0.14	37.4	26		

A. I. Heft et al. (2012). "Introduction of a new realistic generic car model for aerodynamic investigations" in SAE International.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks

Numerical experiments: DrivAer fastback

Table: DrivAer car with 106.4M DOFs on five JFF nodes (2x Intel Xeon 6230).

preconditioner	n_b	coarsening ratio	avg nnzr	its	t-sol (s)	speed-up
AMG	1	0.36	14.7	26	7.71	1.00
AMGR	2	0.14	37.4	26	5.39	1.43

A. I. Heft et al. (2012). "Introduction of a new realistic generic car model for aerodynamic investigations" in SAE International.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework 0000●

Concluding remarks

Numerical experiments: DrivAer fastback

Table: Heat exchanger with 18.4M DOFs on two JFF nodes (2x Intel Xeon 6230).

preconditioner	n_b	coarsening ratio	avg nnzr	its	t-sol (s)	speed-up
AMG	1	0.36	14.5			
AMGR	2	0.14	37.5			
AMGR	4	0.15	37.4			
AMGR	8	0.15	37.6			

L. Paniagua et al. (2014). "Large eddy simulations (LES) on the flow and heat transfer in a wall-bounded pin matrix" in *Numerical Heat Transfer, Part B: Fundamentals*.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework 0000●

Concluding remarks

Numerical experiments: DrivAer fastback

Table: Heat exchanger with 18.4M DOFs on two JFF nodes (2x Intel Xeon 6230).

preconditioner	n_b	coarsening ratio	avg nnzr	its	t-sol (s)	speed-up
AMG	1	0.36	14.5	20		
AMGR	2	0.14	37.5	19		
AMGR	4	0.15	37.4	19		
AMGR	8	0.15	37.6	18		

L. Paniagua et al. (2014). "Large eddy simulations (LES) on the flow and heat transfer in a wall-bounded pin matrix" in *Numerical Heat Transfer, Part B: Fundamentals*.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework 0000●

Concluding remarks

Numerical experiments: DrivAer fastback



Table: Heat exchanger with 18.4M DOFs on two JFF nodes (2x Intel Xeon 6230).

preconditioner	n_b	coarsening ratio	avg nnzr	its	t-sol (s)	speed-up
AMG	1	0.36	14.5	20	1.54	1.00
AMGR	2	0.14	37.5	19	1.12	1.38
AMGR	4	0.15	37.4	19	1.03	1.50
AMGR	8	0.15	37.6	18	0.91	1.68

L. Paniagua et al. (2014). "Large eddy simulations (LES) on the flow and heat transfer in a wall-bounded pin matrix" in *Numerical Heat Transfer, Part B: Fundamentals*.

Mesh symmetries and SpMM 000000

Algebraic Multigrid reduction framework

Concluding remarks ●○○

Concluding remarks

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework 00000

Concluding remarks ○●○

Conclusions

- Exploiting symmetries reduces the setup costs of the matrices.
- Exploiting symmetries reduces the memory footprint of the matrices.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework

Concluding remarks ○●○

Conclusions

- Exploiting symmetries reduces the setup costs of the matrices.
- Exploiting symmetries reduces the memory footprint of the matrices.
- SpMM naturally applies to all operators of the form $\bar{H} = \mathbb{I}_{n_b} \otimes H$.
- SpMM makes matrix multiplications considerably more compute-intensive.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework 00000

Concluding remarks ○●○

Conclusions

- Exploiting symmetries reduces the setup costs of the matrices.
- Exploiting symmetries reduces the memory footprint of the matrices.
- SpMM naturally applies to all operators of the form $\bar{H} = \mathbb{I}_{n_b} \otimes H$.
- SpMM makes matrix multiplications considerably more compute-intensive.
- AMGR reduces the memory footprint of the top-level smoother.
- AMGR reduces the setup costs of the top-level smoother.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework 00000

Concluding remarks ○●○

Conclusions

- Exploiting symmetries reduces the setup costs of the matrices.
- Exploiting symmetries reduces the memory footprint of the matrices.
- SpMM naturally applies to all operators of the form $\bar{H} = \mathbb{I}_{n_b} \otimes H$.
- SpMM makes matrix multiplications considerably more compute-intensive.
- AMGR reduces the memory footprint of the top-level smoother.
- AMGR reduces the **setup costs** of the top-level smoother.
- AMGR does not harm AMG's convergence.
- AMGR results in up to 1.68x overall speedups.

Mesh symmetries and SpMM 000000 Algebraic Multigrid reduction framework 00000

Concluding remarks ○●○

Conclusions

Summary:

- Exploiting symmetries reduces the setup costs of the matrices.
- Exploiting symmetries reduces the memory footprint of the matrices.
- SpMM naturally applies to all operators of the form $\bar{H} = \mathbb{I}_{n_b} \otimes H$.
- SpMM makes matrix multiplications considerably more compute-intensive.
- AMGR reduces the memory footprint of the top-level smoother.
- AMGR reduces the setup costs of the top-level smoother.
- AMGR does not harm AMG's convergence.
- AMGR results in up to 1.68x overall speedups.

Ongoing work:

• Test AMGR on denser problems.

Mesh symmetries and SpMM

Algebraic Multigrid reduction framework 00000

Concluding remarks

Thanks for your attention!