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Abstract – This work investigates the checkerboard problem, a numerical artifact that arises in CFD simulations
using collocated grid arrangements. The decoupling of odd and even cells leads to high frequency, non-physical
pressure modes that lie on the kernel of the discrete Laplacian operator. To avoid this problem, a compact-
stencil Laplacian is often used, but it introduces numerical dissipation, which disrupts the accurate capturing
of the motion of fluids, especially at the smallest scales of turbulence. A better understanding of the origins of
checkerboarding is sought after, using both wide and compact stencils, and three possible mechanisms for its
occurrence are identified. Simple numerical tests are conducted to analyze these mechanisms, and more realistic
simulations are used subsequently to verify the findings.

1. Introduction
Industrial CFD codes often make use of collocated grids. Consistently applying the central
differencing scheme to discretise the Navier-Stokes equations in this arrangement leads to a
wide-stencil Laplacian, in which odd and even cells are decoupled. This can result in high
frequency, non-physical pressure modes, that lie on the kernel of the discrete Laplacian operator,
commonly known as the checkerboard problem [2].

To avoid this problem and to decrease the computational complexity, a compact-stencil
Laplacian is often applied, coupling neighbouring cells, at the cost of introducing numerical
dissipation [6, 1]. This dissipation disrupts the accurate capturing of the motion of fluids, es-
pecially at the smallest scales of turbulence [8], and has been shown to be of a similar order of
magnitude as applied LES models, decreasing their effectiveness [4].

Even with the use of compact stencils, the checkerboard problem has been observed, espe-
cially in unsteady cases using small timesteps [1]. In heat transfer problems, different timescales
for momentum and thermal diffusivity can lead to this effect, allowing for oscillating pressure
fields. Moreover, these patterns might arise through the wide-stencil velocity correction gradi-
ent. Therefore, using a compact-stencil Laplacian introduces numerical dissipation, especially
affecting turbulence, without guaranteeing a solution to checkerboarding in all cases.

In this work, a better understanding of the origins of checkerboarding, using wide and com-
pact stencils, is sought after. With this understanding, less dissipative solutions could become
of interest, such as filtering the oscillatory pressure modes based on the kernel of the discrete
Laplacian operator [5]. The existence and form of this kernel with respect to the mesh and dis-
cretisation method has been examined [3]. This work is extended by addressing the following
questions: How does checkerboarding arise in the first place? And can it arise when the kernel
of the discrete Laplacian only contains the constant mode?

To address these questions, a close examination of widely-used discretisations and algo-
rithms was made and three possible mechanisms were identified. These mechanisms were anal-
ysed using simple numerical tests to gain a better understanding, and subsequently examined
on more realistic, three-dimensional, turbulent cases.
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Velocity predictor up
c = un

c −∆tΩ−1 (C (un
s )+D)un

c (A1.1)

Poisson equation:

if wide stencil → Lcp̃n+1
c = Mcup

c (A1.2a)

if compact stencil → Lp̃n+1
c = Mcup

c (A1.2b)

Update cell-centered velocities un+1
c = up

c −Gcp̃n+1
c (A1.3)

Update face-centered velocities:

if wide stencil: → un+1
s = Γcsun+1

c (A1.4a)

if compact stencil: → un+1
s = Γcsup

c −Gp̃n+1
c (A1.4b)

Algorithm 1: Fractional step method for wide- and compact-stencil Laplacians

2. Possible causes of checkerboarding

The discrete Navier-Stokes equations were solved using the fractional step method. Algorithm 1
illustrates this method using Forward Euler time-integration, as an example. Following the
notation of [7], Lc = McGc = MΓcsΓscG is the so-called wide-stencil Laplacian operator and, if
chosen consistently, the interpolators are related by:

Γsc = Ω
−1

Γ
T
csΩs. (1)

This only leaves one degree of freedom, the choice of collocated-to-staggered interpolator,
Γcs. Conversely, step (A1.2b) uses a compact-stencil Laplacian, L = MG. This eliminates the
checkerboard problem at the cost of numerical dissipation related to non-zero divergence of the
collocated velocities. Using this method, three different possible origins for the checkerboard
problem were identified.

Mechanism 1
When using the compact-stencil method and letting ∆t → 0+, the effect of the second term on
the RHS of step (A1.1) diminishes until up

c = un
c . This situation leads to:

un
c = un−1

c −Gcp̃n
c = u0

c −Gc

n

∑
i

p̃i
c, (2)

Lp̃n+1
c = Mcu0

c −Lc

n

∑
i

p̃i
c, (3)

Lp̂n+1
c = Mcu0

c +(L−Lc) p̂n
c , (4)

in which p̂n
c = ∑

n
i p̃i

c. This gives a solution to the equation in step (A1.2a) which can contain
checkerboard modes that lie on the kernel of Lc, despite using a compact-stencil Laplacian.
Moreover, the Rhie-Chow correction term may be too small when using a very small timestep
to solve unsteady problems, leading to checkerboarding [2]. Low Prandtl number turbulent heat
transfer problems may lead to such cases because of the disparity in thermal and momentum
timescales. Additionally, steady-state solutions reached by transient solvers might lead to a
similar effect, since the lack of change in the solution mimics the effect of very small timesteps.
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Mechanism 2
The second method involves the choice of the Poisson solver. For a stationary iterative method
the Poisson equation is solved by splitting the Laplacian operator, resulting in:

p̃k+1
c = R−1Mcup

c +R−1Sp̃k
c =

k

∑
i=0

(
R−1S

)i
R−1Mcup

c +
(
R−1S

)k+1 p̃0
c , (5)

where L is split as L = R− S and R is chosen to be easily invertible, e.g. R = diag(L) for the
Jacobi method. The second term on the RHS of equation (5) accounts for the initial guess and
is optional. If the image of R−1, Im

(
R−1), is non-orthogonal to the kernel of Lc, Ker(Lc), the

solution can contain checkerboard modes. These modes can subsequently be preserved by the
initial guess. Similarly, if a preconditioner is used as:

Q−1
L LQ−1

R q̃n+1
c = Q−1

L Mcup
c , (6)

where Q−1
R q̃n+1

c = p̃n+1
c , then Im

(
Q−1

R
)

might not be orthogonal to Ker(Lc), possibly leading
to checkerboarding.

Mechanism 3
The third method involves the wide-stencil Laplacian that is implicitly formed by the divergence
and gradient, Mc and Gc, on the RHS of the equations in steps (A1.2a), (A1.2b) and (A1.3). If
both interpolations in these operators are consistent, e.g. both midpoint, we can show that this
operation is symmetric:

McGc = MΓcsΓscG = MΓscΩ
−1

Γ
T
csΩsG =−MΓscΩ

−1
Γ

T
csM

T , (7)

where we used G=−Ω−1
s MT [7]. For symmetric matrices, the image and kernel are orthogonal,

i.e. LT
c = Lc ⇒ Im(Lc)⊥Ker(Lc), if not, the result of this operation can contain checkerboard

modes. This implicit McGc occurs when rewriting the RHS of the equations in steps (A1.2a)
and (A1.2b) using the equations in steps (A1.1) and (A1.3):

Mcup
c = Mcup(n−1)

c −McGcp̃n
c −∆tMcΩ

−1 (C (un
s )+D)un

c . (8)

Therefore, checkerboarding might arise if the interpolators in Gc and Mc are chosen to be in-
consistent with respect to each other, i.e. not according to equation (1).

3. Numerical results

Firstly, these methods are examined on a two-dimensional Taylor-Green vortex, monitoring the
influence of several different parameters, such as kinematic viscosity (ν), Laplacian discretisa-
tion, mesh stretching and Poisson solver, see figure 1. Once better understood, the mechanisms
and effects will be tested using a three-dimensional incompressible turbulent channel flow, see
figure 2, and a differentially heated cavity (not shown). Using these more realistic and relevant
cases, the presence and suppression of checkerboarding will be demonstrated, as well as the
gain in accuracy when eliminating the numerical error introduced by the widely-used compact-
stencil Laplacian.
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Figure 1: Visible checkerboard modes (p−) in a Taylor-Green vortex using a uniform grid,
Re = 200π , a PCG solver and incomplete Cholesky factorisation of the wide-stencil Laplacian

Figure 2: Checkerboarding in an incompressible turbulent channel flow at Reτ = 180
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