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Abstract – In computational fluid dynamics (CFD), the checkerboard problem remains a challenging issue
when employing collocated grid arrangements for complex geometries. It manifests as oscillatory and non-
physical pressure modes, which can disrupt fluid motion and compromise numerical accuracy. This work fo-
cuses on quantifying and mitigating checkerboarding conservatively in numerical simulations of turbulent flows.
First, several quantification methods are introduced and tested, leading to a global, normalised, dimensionless
checkerboard coefficient Ccb, which can be employed even on complex geometries. Through this coefficient,
a new self-regulatory solver was developped that monitors the quantity of checkerboarding during runtime and
adjusts the pressure predictor accordingly to mitigate checkerboarding at the cost of a higher pressure error.
Comparing this solver to existing solvers on a channel flow at Reτ = 180, and analysing the turbulent kinetic
energy budgets, it was shown that this solver is effective in reaching its design purpose. The new approach
provides a unified and efficient solution to mitigate checkerboarding, enhancing reliability and accuracy of CFD
simulations.

1. Introduction
Industrial CFD codes are often used with complex geometries, for which a collocated grid
arrangement is more suitable. Using a central differencing scheme to discretise the divergence
and gradient operators of the Navier-Stokes equations will lead to a wide-stencil Laplacian,
in which odd and even cells are decoupled. These decoupled cells can form oscillatory, non-
physical patterns, which lie on the kernel of the discrete Laplacian and are therefore invisible to
the CFD algorithm. This problem is known as the checkerboard problem [3].

Most collocated CFD methods mitigate these oscillations by applying a compact-stencil
Laplacian, which couples neighbouring cells. However, this method introduces numerical dis-
sipation [7, 2], which disrupts the motion of fluids, especially at the smallest turbulent length-
scales [10]. A different, non-dissipative solution is to filter the spurious pressure modes which
lie on the kernel of the discrete wide-stencil Laplacian [6, 4]. This is not suitable for complex
geometries however, since calculating the kernel becomes too computationally expensive.

Regardless of the use of the compact-stencil Laplacian, oscillatory patterns can sometimes
still be observed, especially when small timesteps are used in unsteady cases [2], or when
a predictor pressure is included in the velocity predictor [5]. In this work, the occurrence
of checkerboarding despite the usage of a compact-stencil Laplacian is examined. Since the
compact-stencil Laplacian does not contain spurious modes on its kernel, a broader definition
of checkerboarding also has to be examined. Multiple definitions to do so were designed and
tested. The checkerboard problem was quantified for a turbulent channel flow at Reτ = 180 to
examine the different definitions and to compare them to the definition that is restricted to the
wide-stencil Laplacian kernel modes.
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Finally, when quantification during runtime is made possible, a solver is proposed that
uses this information to self-regulate the amount of numerical dissipation through the pressure
error. This solver is tested and compared to existing solvers using a channel flow at Reτ = 180,
comparing both qualitative and quantitative checkerboarding. Furthermore, an analysis of the
turbulent kinetic energy budgets was made to monitor possible loss of accuracy in the solution,
as a result of this self-regulation.

2. Quantification methods
To examine the origin and quantification methods of checkerboarding, the Navier-Stokes equa-
tions were discretised and a fractional step method was used to advance the equations in time.
This method is given in algorithm 1, in which Forward Euler is used for simplicity as an exam-
ple for the temporal integration. The notation of algorithm 1 follows the work of [8], where

L = MG, (1)
Lc = McGc = MΓcsΓscG, (2)

Γsc = Ω
−1

Γ
T
csΩs, (3)

−MT = ΩsG, (4)

−MT
c =−(MΓcs)

T = ΩΓscG = ΩGc, (5)

with Laplacian, L, gradient, G, divergence, M, collocated operators denoted by subscript c, cell-
to-face interpolator, Γcs, face-to-cell interpolator, Γsc, cell volumes, Ω and face volumes, Ωs.
Note that the Laplacians are symmetric and that Lc and Gc have kernels that contain spurious
modes. In contrast to not using a pressure predictor, i.e. setting p̃p

c = 0c, using a predictor
value of p̃p

c = p̃n
c led to more severely pronounced checkerboarding in a turbulent channel flow

[4]. This is because, effectively, a larger part of the pressure is treated with a wide-stencil
Laplacian, as can be seen in equation A1.3. The difference in checkerboarding can be monitored
in many ways, and usually the term checkerboarding is used very loosely and qualitatively.
Therefore multiple methods are derived below and tested for their validity and correspondence
to qualitative results.

Partial velocity predictor Rn
c = un

c −∆tΩ−1 (C (un
s )+D)un

c (A1.1)

Velocity predictor up
c = Rn

c −Gcp̃p
c (A1.2)

Poisson equation Lp̃′
c = Mcup

c = McRn −Lcp̃p
c (A1.3)

Update cell-centered velocities un+1
c = up

c −Gcp̃′
c (A1.4)

Update face-centered velocities un+1
s = Γcsup

c −Gp̃′
c (A1.5)

Update pressure p̃n+1
c = p̃p

c + p̃′
c (A1.6)

Algorithm 1: Fractional step method including pressure predictor
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Strict kernel definition – ”||pCB|| method”
This definition only considers modes of pressure that lie on the kernel of the wide-stencil Lapla-
cian, Lc. If Lc is constructed using volumetric interpolation, i.e. φ f =(∆−φ−+∆+φ+)/(∆−+∆+),
then a set of pressure modes that span the kernel for 3D Cartesian meshes, p−

c , can be con-
structed as follows:

Ker(Lc) = span(p−) = span
(

1, (−1)i
∆i, (−1)i+ j

∆i∆ j, (−1)i+ j+k
∆i∆ j∆k

)
(6)

||pCB||= ||pro jKer(Lc)(p
n+1
c )|| (7)

where i, j and k are the indices of the cells in each Cartesian direction. This results in 8 modes
if permutations of Cartesian directions are accounted for. The quantification relies on taking
the magnitude of the pressure field projected onto the kernel modes, given by equation 7. This
definition only holds on Cartesian meshes.

Norm of the Rhie-Chow correction term – ”||RC|| method”
The Rhie and Chow correction term is the difference between the face-centered velocites, un+1

s ,
and the interpolated cell-centered velocities, Γscun+1

c , which causes the damping of the spurious
pressure modes. It can be expressed from equations A1.5 and A1.4 as:

||RC||= ||un+1
s −Γcsun+1

c ||
= ||Γcsup

c −Gp̃′
c −Γcs

(
up

c −Gcp̃′
c
)
||

= ||(ΓcsGc −G) p̃′
c||

(8)

Pressure diffusion energy budget term – ”Pdiff method”
Another quantification method, which makes more physical sense, is the pressure diffusion
budget term, found by taking the inner product of velocity and the momentum equation, given
in equation 9. In a continuous framework this term equals zero, however, not necessarily when
discretised. In turn, this budget term can be rewritten to include the term found in equation 8.
Here, ΩGc =−MT

c and Mun+1
s = 0c are used to rewrite in terms of equation 8:

Pdi f f = un+1T

c ΩGcpn+1
c

=−pn+1T

c Mcun+1
c

= pn+1T

c M
(
un+1

s −Γcsun+1
c

)
= pn+1T

c M (ΓcsGc −G) p̃′
c.

(9)
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Difference in the norms of the gradients – ”∆||∇p|| method”
Next, a method similar to equation 9 was considered, where p̃′

c is replaced by pn+1T

c to make it
independent of time-step size and pressure predictor. It then follows that this term is a simple
difference in the norms of the compact- and wide-stencil gradients of pressure:

∆||∇p||= pn+1T

c M (ΓcsGc −G)pn+1
c

= pn+1T

c (Lc −L)pn+1
c

= ||Gpn+1
c ||− ||Gcpn+1

c ||,

(10)

where the norm of a field is expressed as ||φc|| = φ T
c Ωφc and ||φs|| = φ T

s Ωsφs. This term has
the nice properties that highly oscillatory pressure modes, such as the ones in Ker(Lc), are only
filtered by Gc and will therefore be represented in this term.

Ratio of connectivity norms – ”Ccb method”
Finally, a method was derived from equation 10, where the gradient is replaced by a non-
dimensional gradient, G∗, which is a cell-to-face incidence matrix, so that:

[G∗pc] f = [δn, f Gpc] f = pc,n −pc,o, (11)

M∗ =−G∗T
Ωs, (12)

L∗ = M∗G∗ =−G∗T
ΩsG∗, (13)

L∗
c = M∗

c G∗
c =−G∗

cΩG∗
c . (14)

Then, the norm of ||G∗pc|| is divided out to normalise the term. Leading to the checkerboard
coefficient, Ccb:

Ccb =−pT
c (L

∗
c −L∗)pc

pT
c L∗pc

= (||G∗pc||− ||G∗
cpc||)/||G∗pc||

(15)

Choice in quantification method
A turbulent channel flow at Reτ = 180 was run on a 4π×2× 4

3π domain with 38×108×38 cells
in x,y,z respectively. The mesh was stretched in the y-direction from ∆y+w = 0.66 to ∆y+B = 9.4.
The symmetry-preserving Runge-Kutta OpenFOAM solver RKSymFoam was used, which was
developped for [5] and can be found in the GitHub repository given in the author’s affiliations.
The Runge-Kutta 3 scheme was used with ∆t = 0.001. The case was run with p̃p

c = 0c and
p̃p

c = p̃n
c , to obtain different levels of checkerboarding. Also, the effect of filtering the p−-modes

was examined, obtaining a total number of 4 different cases.
From figure 1 it can clearly be seen that the choice in pressure predictor has a sizable effect

on the severity of the oscillations that can be observed. Though much smaller, some oscillations
can also be observed in the channel flows with absence of a pressure predictor. Finally, the effect
of filtering the p− modes does not remove the visible oscillations in either case.
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Table 1: Quantification of checkerboarding using different methods
p̃p

c = 0c p̃p
c = p̃n

c
unfiltered filtered unfiltered filtered

||pCB|| 3.4 ·10−5 2.8 ·10−22 1.1 ·10−5 1.1 ·10−22

||RC|| 4.3 ·10−3 4.3 ·10−3 3.7 ·10−5 3.7 ·10−5

Pdi f f −5.5 −5.5 −5.8 ·10−3 −5.8 ·10−3

∆||∇p|| 6.0 ·103 6.0 ·103 1.6 ·104 1.6 ·104

Ccb 0.62 0.62 0.76 0.76

The quantification results in table 1 firstly show that the p−-filtering only affects the value
of ||pCB||, however, the problem qualitatively still exists, therefore this method may give a false
impression that the problem was solved. Furthermore, neither ||pCB||, nor ||RC||, nor Pdi f f were
able to portray the difference in severity of the oscillations caused by the pressure predictor,
leaving ∆||∇p|| and Ccb as the only suitable quantification methods. Both ||RC|| and Pdi f f may
suffer from the fact that only p̃′

c is included in these terms instead of the full pressure. This may
lead to compensation between higher oscillations and a lower value of p̃′

c between the cases with
and without pressure predictors. Between ∆||∇p|| and Ccb, Ccb is favorable because its value
is normalised and dimensionless, making it easier to compare the quantity of checkerboarding
between different cases.

In conclusion, a normalised, non-dimensional method that detects local oscillations and
includes full pressure, regardless of time-integration method, is preferred, all of which can be
found in Ccb.

Figure 1: Part of y-plane (halved in x and z) of turbulent channel flows, at center height
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3. Filtering checkerboarding conservatively

The choice of pressure predictor is of great influence on the level of checkerboarding [5]. The
choice is usually made between p̃p

c = 0c, or p̃p
c = p̃n

c , corresponding to the classical fractional
step method and the Van Kan method [9]. Since using Ccb enables quantifying checkerboarding
during runtime, and since the value is bounded between 1 (pressure consists of only kernel
modes) and 0 (perfectly smooth field), this value can be used to set an interactive, self-regulating
pressure predictor. To do so, the pressure predictor is rewritten as:

pp
c = θppn

c (16)

Then, using θp = 1−Ccb, the pressure predictor will be self-regulated to diminish checker-
boarding. If there is no checkerboarding present, this solver will use a full pressure predictor,
reducing the pressure error from the order of O(∆th2) to O(∆t2h2), whereas in the presence of
checkerboarding, it will favour less oscillatory pressure fields at the cost of a higher pressure
error. This new solver scheme was compared to θp = 0 and θp = 1, leading to the following
solvers:

Solver θ0 θ1 θcb

θp 0 1 1−Ccb

These solvers were all tested with a channel flow at Reτ = 180 with the exact same domain,
discretisations and solvers as for the results shown in figure 1.

4. Kinetic energy budgets

To analyse the turbulent channel flow, the turbulent kinetic energy budgets were monitored,
aside from some of the lower order statistical quantities: ux, ux,RMS, uy,RMS, uz,RMS and k = u′iu

′
i.

· is used to indicate temporal averaging and averaging in x and z directions, leading to quantities
as a function of the channel height, y+. The transport equation for turbulent kinetic energy is
given by:

Dk
Dt

= ∂tk+u j ∂ jk =−u′iu
′
j∂ jui −u′iu

′
j∂ ju′i +2ν∂ j

(
u′iS

′
i j

)
−2νS′i jS

′
i j −u′i∂i p′ (17)

where Si j =
1
2

(
∂ jui + ∂iu j

)
gives the symmetric rate-of-strain tensor and Einstein summation

convention was used to indicate summation over variables with the same indices. The terms
on the RHS of equation (17) give the turbulent kinetic energy budget terms, production, Pk,
transport, Tk, viscous diffusion, Dv

k, dissipation, εk and pressure diffusion, Dp
k , respectively. To

accurately calculate these terms, it is important to use the same discrete operators as the ones
found in the code of the solver, therefore the gradients are taken before field averaging in time
and space, and not during post-processing. Moreover, the fluctuating terms in equation (17) can
be rewritten to a combination of instantaneous fields and average fields, by using: φ ′ = φ −φ .
By doing so, no fluctuating fields have to be calculated in the post-process nor do any of these
fields have to be stored in memory. In conclusion, the budget terms were calculated using the
following averaged components:
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Pk =−
(
uiu j −ui u j

)
∂ jui

= uxuy∂yux
(18)

Tk = uiu j∂ jui −ui u j∂ jui −u j ui∂ jui −uiu j ∂ jui +2ui u j ∂ jui

= uiu j∂ jui −ux u j∂ jux −ux ui∂xui −uxuy ∂yux
(19)

Dv
k = νui∂ j∂ jui −νui ∂ j∂ jui − εk

= νui∂ j∂ jui −νux ∂ j∂ jux − εk
(20)

εk =−ν∂ jui∂ jui +ν∂ jui ∂ jui

=−ν∂ jui∂ jui +ν∂yux ∂yux
(21)

Dp
k = ui∂i p−ui ∂i p

= ui∂i p
(22)

where the second line of each of equation (18) to (22) gives the simplified version specific to
the channel flow configuration where: uy = 0, uz = 0, ∂xφ = 0, ∂zφ = 0 and ∂iφ = ∂iφ . The
remaining terms are all scalar values that can easily be averaged over time during runtime by
the solver, greatly reducing the required memory.

5. Results

First impressions of the qualitative levels of checkerboarding for each case are given in figure 2.
The domain was clipped at half the height of the channel, showing oscillatory patterns for all
three solvers. In the center part of the image, corresponding to θ1, the intensity can be seen
to significantly higher than in the other cases. This suggests that the high Ccb led to a low θcb
which self-regulated the occurrence of checkerboarding.

Figure 2: Pressure field at half-height of channel for θ0 (left), θ1 (center) and θcb (right). Visibly
more checkerboarding present in x− and z−directions in θ1
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These findings are confirmed by figure 3, in which Ccb is plotted over time. It is shown
that solver θcb results in significantly less checkerboarding. To see if this mitigation of checker-
boarding came at the cost of less accurate results, a quantification of the flow variables and
budget terms has been performed and their results can be seen in figures 4 and 5, with reference
data of [11]. All terms were non-dimensionalised by uτ and Reτ . With uτ =

√
ν (∂yux)wall ,

which were found for each case to be:

Solver θ0 θ1 θcb

uτ 1.004 0.982 1.004

Figure 3: Checkerboard coefficient monitored over time, using a rolling average of Ccb over
∆T = 5.

As can be seen from figure 4 the mean velocity closely resembles the reference value for
all cases. The main difference with the reference data is that ux,RMS is slightly too high in each
case, which in turn leads to a higher turbulent kinetic energy, k. All solvers show similar results,
suggesting that the energy loss in θ0 and θcb through the pressure error is not significantly
higher.



J.A. Hopman et al.

(a) Mean stream-wise velocity (b) Root mean square ux

(c) Root mean square uy (d) Root mean square uz

(e) Turbulent kinetic energy

Figure 4: Flow characteristics in channel flow at Reτ = 180 for each solver, compared to refer-
ence data of Vreman et al. [11]
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From figure 5 it can be seen that the budgets show a close resemblance to the reference data
of [11]. The production budget term is nearly identical and shows very little error for each case.
The transport term shows very similar behaviour close to the wall with an underestimation for
each case further away from the wall. This behaviour is also seen in the viscous diffusion. The
dissipation budget shows that this underestimation of the previous terms is caused by an error
in the dissipation term. The dissipation term is very sensitive to mesh resolution and especially
on coarser grids, it is very difficult to capture the characteristic bump close to the wall. Finally,
the pressure diffusion term shows resemblance for θ0 and θcb, but θ1 shows a large difference
in the bulk. In conclusion, it can be seen that all solvers behave very similarly, and price for
diminishing checkerboarding is not felt significantly. However, it is important to note that in
cases with lower checkerboarding, θcb also benefits from the lower pressure error that θ1 has,
whereas in the results shown here, it is able to mitigate oscillatory pressure modes through
self-regulation.

6. Conclusions
In this work, the problem of quantifying checkerboard properly was addressed. It was shown
that inclusion of only pressure modes that lie on the kernel of the wide-stencil Laplacian is not
enough to quantify local oscillations nor does it allow quantification of the checkerboard prob-
lem on complex geometries. To overcome these issues, the checkerboard coefficient, Ccb, was
introduced and tested, showing results that coincide with qualitative judgements of oscillation
patterns in a channel flow. Moreover, this coefficient has the advantage of being dimension-
less and normalised. This last quality makes it perfectly suitable as a self-regulatory pressure
predictor coefficient, which is able to increase or decrease depending on the level of quanti-
fied checkerboarding. Through this, one unified solver was developed that is able to mitigate
checkerboarding in a turbulent channel flow case at Reτ = 180, while at the same time retain-
ing its pressure error order of O(∆t2h2) on cases with no occurrence of the problem. It was
shown through turbulent kinetic energy budget analysis that this solver was effective in its desig
whithout significant loss in accuracy. Its Ccb and θcb were found to nicely balance between the
values for θ0 and θ1. In future work, the order of the pressure error will be examined closely
through mesh and temporal refinement studies.
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(a) Production (b) Transport

(c) Viscous diffusion (d) Dissipation

(e) Pressure diffusion

Figure 5: Turbulent kinetic energy budget terms in channel flow at Reτ = 180 for each solver,
compared to reference data of Vreman et al. [11]
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