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Abstract

Central-difference discretisation applied to collocated grids result in a wide-stencil Lapla-
cian that can lead to oscillatory pressure modes, known as the checkerboard problem.
Rhie-Chow like corrections and a compact-stencil Laplacian solve this problem at the cost
of numerical dissipation. To find a conservative solution, a quantification method was de-
rived that sheds more light onto the origins of the problem. The quantification method re-
turns a global non-dimensional normalised coefficient, independent of time-step, Ccb, also
able to detect local oscillations which lie outside of the kernel of the discrete wide-stencil
Laplacian. Ccb was used to self-regulate the pressure predictor through negative feedback,
since it is known to be a cause of checkerboarding. The quantification method predicted
levels of checkerboarding consistent with qualitative results of a turbulent channel flow
at Reτ = 180. Moreover, the levels of checkerboarding were successfully self-regulated
to diminish oscillations at similar accuracy. Through this quantification method, other
new methods could be developed that mitigate oscillations only when necessary, leading
to more conservative solutions to the checkerboard problem.

Equations

The fractional step method that leads to checkerboarding and two ways to avoid it are given
in table 1. The pressure error is caused by the divergence in the velocity fields found in the
oscillation-free methods result, which are non-zero and proportional to ∆t(Lpc − Lcpc).

Table 1: Occurrence of and solutions to checkerboarding in the fractional step method. Notation from [1].
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Checkerboard coefficient

Oscillations in the pressure field are not felt by the wide-stencil gradient, suggesting the
kernel of Lc would be a good definition to quantify checkerboarding. However, local os-
cillations lie outside of the kernel, and should be accounted for [3]. A less strict definition
is found by looking at the global pressure diffusion budget term:
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which is strictly dissipative. If we divide out ∆tpT
cLpc, we find:
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Which nicely gives a global non-dimensional normalised coefficient, independent of time-
step, with Ccb = 1 for pure oscillatory fields fully inside Ker(Lc). One common cause
of checkerboarding is the inclusion of a pressure predictor, which can be weighted by a
non-dimensional coefficient as:

pp
c = θppn

c (3)

By setting θp = 1− Ccb = ||Gcpc||
||Gpc||

, a self-regulating solver with variable inclusion of pres-
sure predictor is derived. This solver was tested and compared to other values of θp:

Solver θ0 θ1 θcb

θp 0 1 1− Ccb

Results

A turbulent channel flow at Reτ = 180 was run on a 4π×2×4
3
π domain with 38×108×38

cells in x, y, z respectively. The mesh was stretched in the y-direction from ∆y+
w = 0.66

to ∆y+
B = 9.4. The symmetry-preserving Runge-Kutta OpenFOAM solver RKSymFoam

of [2] was used, which can be found in the GitHub repository given in the author’s affilia-
tions. The Runge-Kutta 3 scheme was used with ∆t = 0.001.
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Figure 1: Checkerboarding in turbulent channel flow at Reτ = 180, xz−plane at y = 1

Figure 2: The heavy oscillations present in θ1 are clearly depicted by Ccb

Figure 3: Solvers show comparable accuracy through RMS velocities

From figures 1 and 2 it can be seen that the oscillations occur most heavily for θ1, which
is correctly portrayed by Ccb. Since the case is prone to checkerboarding, Ccb adjusts θp
to diminish the problem, resulting in a relatively low Ccb. Moreover, figure 3 shows that
there is no significant difference in accuracy between the methods.

Conclusions

• Ccb quantifies checkerboarding with a global non-dimensional normalised coefficient,
independent of time-step.

• Using negative feedback of Ccb to determine the pressure predictor, levels of
checkerboarding could be self-regulated.

• Ccb could be used to develop other methods that only diminish oscillations (locally)
at the cost of numerical dissipation, whenever necessary.
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