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Abstract – In this work, an energy-preserving unconditionally stable fractional step method on collocated un-
structured grids is presented. Its formulation is based on preserving the underlying symmetries of the differen-
tial operators. This formulation was proven to be unconditionally stable even for highly distorted meshes [1, 2].
Conservation of (global) kinetic energy is also a key feature in simulations. Within this context, a canonical
case is tested, a differentially heated cavity, in order to show that the (artificial) kinetic energy error introduced
by the pressure is negative and small compared with the physical dissipation.

1. Introduction
General CFD codes such as OpenFOAM or ANSYS-Fluent use a finite-volume (stencil) dis-
cretization over unstructured meshes and a collocated formulation to solve the Navier-Stokes
equations. The stencil formulations solve the discretised equations using an algorithm that
calculates the desired values cell by cell. Alternatively, algebraic formulations keep them in
matrix-vector form, and use these matrices and vectors to calculate the desired quantities.

A collocated fully-conservative algebraic symmetry-preserving formulation of incompress-
ible Navier-Stokes equations was proposed by Trias et al.[3]. Assuming n control volumes and
m faces:

Ω
duc

dt
+C(us)uc = Duc −ΩGc pc, (1)

Mus = 0c, (2)

where uc ∈R3n and pc ∈Rn are the cell-centered velocity and the cell-centered pressure, respec-
tively. The face-centered quantities, such as us ∈ Rm are related to the cell-centered quantities
via an interpolation operator Γc→s ∈ Rm×3n:

us = Γc→suc. (3)

Finally, Ω ∈ R3n×3n is a diagonal matrix containing the cell volumes, C(us) ∈ R3n×3n is
the discrete convective operator, D ∈ R3n×3n is the discrete diffusive operator, Gc ∈ R3n×n is
the cell-to-cell discrete gradient operator and M ∈ Rn×m is the face-to-cell discrete divergence
operator. After applying the Fractional Step Method (FSM) to the Navier-Stokes equations, the
velocity correction reads:

un+1
c = up

c −Γs→cGpn+1
c , (4)

where Γs→c ∈R3n×m is the face-to-cell interpolator, which is related to the cell-to-face interpo-
lator via the volume matrices Γs→c = Ω−1Γc→sΩs, and G ∈ Rm×n is the cell-to-face gradient
operator.
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Only three discrete geometrical operators are needed to formulate these equations: the
cell-centered and staggered control volumes (diagonal matrices), Ωc and Ωs, the face normal
vectors, Ns; plus two non-geometrical ones: the scalar cell-to-face interpolation, Πc→s and the
cell-to-face divergence operator, M. For more details of these operators and its construction,
the reader is referred to [3]. Due to its simplicity, these operators can be easily built in existing
codes, such as OpenFOAM [4]. A fully-portable algebra-based HPC2 framework can be found
in [5].

2. An energy-preserving unconditionally stable FSM

From our point of view, the physical structure of the equations is only respected when the sym-
metries of these differential operators is preserved. For instance, constructing G = −ΩsMT is
necessary to preserve kinetic energy [3], but it is also mimicking the symmetries of the contin-
uous level operators [6].

The turbulence phenomenon is caused by a balance between convective transport and dif-
fusive dissipation. The discrete forms of these two physical processes are defined by C(us) and
D, respectively. At the continuous level, the convective operator is skew-symmetric, while the
diffusive operator is symmetric and negative-definite. If we keep these properties at the discrete
level (namely C(us) being a skew-symmetric matrix, D being a symmetric negative-definite
matrix and G =−ΩsMT ), the discrete convective operator will transport energy from resolved
motion scales to others without dissipating energy.

The utility of an algebraic formulation can be found, as an example, in [1, 2]. In these
works, the matrix-vector formulation is employed to investigate the stability of the solution in
terms of the pressure gradient interpolation in collocated frameworks. To do so, the eigenvalues
of L−Lc were deeply studied (L = MG ∈ Rn×n is the compact Laplacian operator whereas
Lc = MΓc→sΓs→cG ∈ Rn×n is the collocated wide-stencil Laplacian operator), and the cell-to-
face interpolation that leads to an unconditionally stable FSM turned out to be:

Πc→s = ∆
−1
s ∆

T
sc ∈ Rm×n, (5)

where ∆s ∈Rm×m is a diagonal matrix containing the projected distances between two adjacent
control volumes, and ∆sc ∈ Rn×m is a matrix containing the projected distance between a cell
node and its corresponding face. For details, the reader is encouraged to consult[1, 2].

3. Conservation of global kinetic energy

The global discrete kinetic energy temporal evolution equation can be obtained by left-multiplying
Eq. (1) by uT

c and adding it with its transpose. Taking into account that the convective operator
should be skew-symmetric:

d
dt
||uc||2 = uT

c (D+DT )uc −uT
c ΩGc pc − pT

c GT
c Ω

T uc. (6)

The pressure error contribution introduced to the discrete kinetic energy equation is zero
for symmetry-preserving staggered formulations, due to the fact that G = −ΩsMT , and the
incompressibility constraint Mus = 0. However, in collocated formulations Mcuc ≈ 0, but not
strictly zero.

In collocated framework, the (artificial) kinetic energy added is given by:

−pT
c GT

c Ω
T uc = pT

c (L−Lc)pc (7)
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The interpolation shown in Eq. (5) assures that L−Lc is negative definite [1, 2], so the
contribution of the (artificial) kinetic energy added by the pressure term is dissipative, ensuring
the stability of the simulation. However, it is important to quantify it.

4. Stability of the method
The stability of the method was confirmed using numerical tests that apply extremely coarse
and very poor quality meshes. Figures 1 and 2 show an example of an air-filled (Pr = 0.71)
differentially heated cavity with aspect ratio 2 at Rayleigh number (based on the cavity height)
of 106, respecting operator symmetries and interpolating the pressure gradient using Eq. (5).

Figure 1: (Top) Test mesh used to check the stability of the method. (Bottom) Zoom at the top
part of the mesh.

As seen in Fig. 2, the method is stable, producing results without blowing up the simu-
lation. The accuracy will be low, as we would anticipate from such a low-quality mesh. It is
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Figure 2: Temperature distribution obtained for Ra = 106 using the mesh displayed in Figure 1.

worth noting that using different interpolations for the pressure gradient, such as 1
2 weights will

immediately blow up the simulation.
Once we assured the stability of the method, the energy budgets will be computed, in order

to quantify the (artificial) contribution of the pressure term to the discrete kinetic energy, as it is
done in [3].
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