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Abstract – In this work, an energy-preserving unconditionally stable fractional step method on collocated un-
structured grids is presented. Its formulation is based on preserving the underlying symmetries of the differen-
tial operators. This formulation was proven to be unconditionally stable even for highly distorted meshes [1, 2].
Conservation of (global) kinetic energy is also a key feature in simulations. Within this context, a canonical
case is tested, a differentially heated cavity, in order to show that the (artificial) kinetic energy error introduced
by the pressure is negative and small compared with the physical dissipation. Furthermore, a stability and accu-
racy comparison is done for the three classical ways of interpolating the pressure gradient: linear interpolation,
mid-point interpolation and volumetric interpolation.

1. Introduction
General purpose CFD codes such as OpenFOAM or ANSYS-Fluent use a finite-volume (sten-
cil) discretization over unstructured meshes and a collocated formulation to solve the Navier-
Stokes equations. The stencil formulations solve the discretised equations using an algorithm
that calculates the desired values cell by cell. Alternatively, algebraic formulations keep them
in matrix-vector form, and use these matrices and vectors to calculate the desired quantities.

A collocated fully-conservative algebraic symmetry-preserving formulation of incompress-
ible Navier-Stokes equations was proposed by Trias et al.[3]. Assuming n control volumes and
m faces:

Ω
duc

dt
+C(us)uc = Duc −ΩGc pc, (1)

Mus = 0c, (2)

where uc ∈R3n and pc ∈Rn are the cell-centered velocity and the cell-centered pressure, respec-
tively. The face-centered quantities, such as us ∈ Rm are related to the cell-centered quantities
via an interpolation operator Γc→s ∈ Rm×3n:

us = Γc→suc. (3)

Finally, Ω ∈ R3n×3n is a diagonal matrix containing the cell volumes, C(us) ∈ R3n×3n is
the discrete convective operator, D ∈ R3n×3n is the discrete diffusive operator, Gc ∈ R3n×n is
the cell-to-cell discrete gradient operator and M ∈ Rn×m is the face-to-cell discrete divergence
operator. After applying the Fractional Step Method (FSM) to the Navier-Stokes equations, the
velocity correction reads:

un+1
c = up

c −Γs→cGpn+1
c , (4)
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where Γs→c ∈R3n×m is the face-to-cell interpolator, which is related to the cell-to-face interpo-
lator via the volume matrices Γs→c = Ω−1Γc→sΩs, and G ∈ Rm×n is the cell-to-face gradient
operator.

Only three discrete geometrical operators are needed to formulate these equations: the cell-
centered and staggered control volumes (diagonal matrices), Ωc and Ωs, the face normal vectors,
Ns; plus two non-geometrical ones: the scalar cell-to-face interpolation, Πc→s and the cell-to-
face divergence operator, M. For more details of these operators and its construction, the reader
is referred to [3]. Due to its simplicity, these operators can be easily built in existing codes, such
as OpenFOAM [4]. In contrast to a collocated arrangement, a staggered symmetry-preserving
discretization can be found in [5].

2. An energy-preserving unconditionally stable FSM
From our point of view, the physical structure of the equations is only respected when the sym-
metries of these differential operators is preserved. For instance, constructing G = −ΩsMT is
necessary to preserve kinetic energy [3], but it is also mimicking the symmetries of the contin-
uous level operators [6].

The turbulence phenomenon is caused by a balance between convective transport and dif-
fusive dissipation. The discrete forms of these two physical processes are defined by C(us) and
D, respectively. At the continuous level, the convective operator is skew-symmetric, while the
diffusive operator is symmetric and negative-definite. If we keep these properties at the discrete
level (namely C(us) being a skew-symmetric matrix, D being a symmetric negative-definite
matrix and G =−ΩsMT ), the discrete convective operator will transport energy from resolved
motion scales to others without dissipating energy.

The utility of an algebraic formulation can be found, as an example, in [1, 2]. In these
works, the matrix-vector formulation is employed to investigate the stability of the solution in
terms of the pressure gradient interpolation in collocated frameworks. To do so, the eigenvalues
of L−Lc were deeply studied (L = MG ∈ Rn×n is the compact Laplacian operator whereas
Lc = MΓc→sΓs→cG ∈ Rn×n is the collocated wide-stencil Laplacian operator), and the cell-to-
face interpolation that leads to an unconditionally stable FSM turned out to be:

Πc→s = ∆
−1
s ∆

T
sc ∈ Rm×n, (5)

where ∆s ∈Rm×m is a diagonal matrix containing the projected distances between two adjacent
control volumes, and ∆sc ∈ Rn×m is a matrix containing the projected distance between a cell
node and its corresponding face. For details, the reader is encouraged to consult[1, 2].

3. Conservation of global kinetic energy
The global discrete kinetic energy temporal evolution equation can be obtained by left-multiplying
Eq. (1) by uT

c and adding it with its transpose. Taking into account that the convective operator
should be skew-symmetric:

d
dt
||uc||2 = uT

c (D+DT )uc −uT
c ΩGc pc − pT

c GT
c Ω

T uc. (6)

The pressure error contribution introduced to the discrete kinetic energy equation is zero
for symmetry-preserving staggered formulations, due to the fact that G = −ΩsMT , and the
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incompressibility constraint Mus = 0. However, in collocated formulations Mcuc ≈ 0, but not
strictly zero.

In collocated framework, the (artificial) kinetic energy added is given by:

−pT
c GT

c Ω
T uc = pT

c (L−Lc)pc∆t. (7)

The interpolation shown in Eq. (5) assures that L−Lc is negative definite [1, 2], so the
contribution of the (artificial) kinetic energy added by the pressure term is dissipative, ensuring
the stability of the simulation. However, it is important to quantify it.

4. Stability of the method
The stability of the method was confirmed using numerical tests that apply extremely coarse
and very poor quality meshes. Figures 1 and 2 show an example of an air-filled (Pr = 0.71)
differentially heated cavity with aspect ratio 2 at Rayleigh number (based on the cavity height)
of 106, respecting operator symmetries and interpolating the pressure gradient using Eq. (5).

Figure 1: (Top) Test mesh used to check the stability of the method. (Bottom) Zoom at the top
part of the mesh.
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Figure 2: Temperature distribution obtained for Ra = 106 using the mesh displayed in Figure 1.

As seen in Fig. 2, the method is stable, producing results without blowing up the simu-
lation. The accuracy will be low, as we would anticipate from such a low-quality mesh. It is
worth noting that using different interpolations for the pressure gradient, such as 1

2 weights will
immediately blow up the simulation.

Once we assured the stability of the method, the energy budgets will be computed, in order
to quantify the (artificial) contribution of the pressure term to the discrete kinetic energy, as it is
done in [3].

5. Numerical test: turbulent differentially heated cavity
In this section, the accuracy of the presented discretization is tested by means of a 2D air-filled
(Pr = 0.71) differentially heated cavity [7]. A temperature difference ∆T is found across the
vertical isothermal walls, whereas the top and bottom walls are adiabatic. A height aspect
ratio of L3/L2 = 4 and a Rayleigh number of Ra = 1010 (based on the cavity height) have
been chosen for the sake of comparison [3, 7]. A transport equation for the temperature T has
been discretized using the same operators presented in the previous sections and the Boussinesq
approximation is considered in order to take into account gravitational effects.

This case is of particular interest to test our method because, in terms of energy budgets,
the dissipation rate (destruction) should counter the buoyancy effects (production). This balance
between production and destruction lead us to expect the evolution of the global kinetic energy
to be zero. Of course, numerical discrepancies will be found due to the chosen discretization.
Furthermore, if a collocated arrengement is used, a (hopefully small) term due to the pressure
gradient contribution to the kinetic energy will also be present.

Besides, three different interpolators were tested for the pressure gradient interpolation: a
linear interpolation, a mid-point interpolation (1

2 weigths) and a volumetric interpolation (see
eq. (5)).
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5.1 Structured discretization
The first test was done using a structured mesh with N2 = 128 and N3 = 326, applying the
following stretching to the x2−coordinate:

(x2)k =
1
2

L2

L3
(1+

tanh{γ2(2(k−1)/N2 −1)}
tanhγ2

), k = 1, ...,N2 +1. (8)

This mesh, with an stretching factor γ2 = 2, was proven in [7] to be sufficient to obtain
accurate solutions. Figure 3 shows a zoom of the top part of this mesh. However, it is worth to
mention that the time scheme used in that work is not the same that the one chosen here (the
already implemented Euler time scheme in OpenFOAM).

Figure 3: Top part of the mesh used to check the accuracy of the method.

A total time of 800s was simulated, with a ∆t = 0.005s, which mantains a maximum
Courant number of around 0.45 and a mean Courant number of 0.033. The average time was
selected to be 400s. The normalized time-averaged values of the contributions to the global ki-
netic energy can be found in table 1 for the different interpolations. They have been normalized
with respect to the averaged total dissipation rate.

Interpolation Conv Diff Buoyancy PressGrad
Linear ≈ 0 −1 1.01062 −4.90×10−3

Mid-point ≈ 0 −1 1.01168 −4.99×10−3

Volumetric ≈ 0 −1 1.01099 −4.89×10−3

Table 1: Time-averaged normalized contributions to the global kinetic energy for different pres-
sure gradient interpolations.

As expected, the contribution of the convective term is practically zero, due to the skew-
symmetric convective operator. The results are found to be very similar because in the particular
case of the mesh being locally uniform (that is, low aspect ratios are found between adjacent
control volumes) the three interpolators are practically the same. However, with such a mesh,
small differences are present. Finally, the pressure gradient contribution is negative for the three
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interpolators in this case, which was also expected. This negative contribution of the pressure
gradient is assuring the method to be stable. Once this contribution becomes positive, which
can be the case for the linear and mid-point interpolations in highly distorted meshes [2], energy
is introduced to our system, making the simulation to blow up.

It is worth to mention that in this case, the amount of artificial kinetic energy introduced
by the volumetric interpolation seems to be smaller, but very similar to the linear one. The
mid-point interpolation seems to behave clearly worse than the other two.

5.2 Cartesian uniform discretization
In this section, a comparison of the previous results will be done against a better resolution
mesh. To do so, a Cartesian uniform grid of N2 = 250 and N3 = 1000 (N1/2

total = 500) was used.
This number of control volumes was chosen taking into account that in [3] the results were
already converged with this mesh to the selected reference solution. Furthermore, the fact that
the mesh is Cartesian and uniform assures that the results are not depending on the chosen
interpolation.

A total time of 800s was simulated, with a variable ∆t, mantaining a maximum Courant
number below 1 and a mean Courant number below 0.15. The average time was selected to be
400s. The normalized time-averaged values of the contributions to the global kinetic energy can
be found in table 2. They have been normalized with respect to the averaged total dissipation
rate. Besides, a comparison against the previous obtained results have been done to see which
results are closer to the Cartesian uniform ones. To do so, the diffusive and the buoyancy
contributions of the previous results were normalized by the Cartesian uniform diffusive and
buoyancy contributions, respectively.

Interpolation Conv Diff Buoyancy PressGrad
Cartesian uniform ≈ 0 −1 0.99957 −5.33×10−4

Linear 0.98145 0.99230
Mid-point 0.97782 0.98966
Volumetric 0.98181 0.99302

Table 2: Time-averaged normalized contributions to the global kinetic energy for the Cartesian
uniform grid (row 1). Normalized comparison of the resuts obtained with the stretched meshes
compared to the Cartesian uniform ones (rows 2−4).

It can be seen that the balance obtained for the Cartesian uniform grid is closer to 1 that the
previous ones. Furthermore, again it is noticeable that the mid-point interpolation works worse
than the other two, while the volumetric behaves slightly better than the linear.

5.3 Unstructured discretization
Taking into account that it is always difficult to do a direct comparison between structured and
unstructured grids, an unstructured triangular mesh of N1/2

total ≈ 506 was used. Figure 4 show the
top part of this mesh:

The normalized time-averaged values of the contributions to the global kinetic energy for
this particular unstructured grid can be found in table 3 for the different interpolations. Besides,
a comparison with the Cartesian uniform grid results can be also found.

In this case, again, the convective contribution is almost zero and the balance between the
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Figure 4: Top-left part of the unstructured mesh used to check the accuracy of the method.

Interpolation Conv Diff Buoyancy PressGrad
Linear ≈ 0 −1 1.00854 −1.33×10−3

Mid-point ≈ 0 −1 1.00968 −1.35×10−3

Volumetric ≈ 0 −1 1.01063 −1.59×10−3

Linear 0.97640 0.98516
Mid-point 0.97439 0.98424
Volumetric 0.97840 0.98923

Table 3: Time-averaged normalized contributions to the global kinetic energy for different pres-
sure gradient interpolations for the unstructured mesh (rows 1−3). Normalized comparison of
the resuts obtained with the unstructured mesh compared to the Cartesian uniform ones (rows
4−6).

production and destruction is very similar for the three interpolators. Perhaps this is due to the
fact that, despite the mesh being unstructured, it is very uniform, and the presence of high aspect
ratio control volumes is not found. Nonetheless, the results of the volumetric interpolation are
slightly closer to the Cartesian uniform grid results than the other two.

Finally, even though the pressure gradient contribution is negative and very small in com-
parison, it seems that the volumetric interpolator is introducing more artificial kinetic energy
than the other two. This result is totally opposite to what we found before in table 1. It is
noteworthy to highlight that the centroid of the control volumes was located at the barycenter
and this affects to the weights of the linear and volumetric interpolations. It would also be of
interest to check if this feature is found using circumcentric centroids.

5.4 Final discussion
As it can be seen from previous sections, the mid-point interpolation seems to perform slightly
worse than the linear and the volumetric ones. Despite the fact that for low-distorted meshes
the linear and the volumetric seems to behave similar, when high-aspect ratio control volumes
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are introduced to the grid, the linear interpolation becomes very unstable. In order to illustrate
that fact, let us consider the mesh from Figure 5.

Figure 5: Central part of the 125x500 mesh used to test the stability of the linear interpolator.
The maximum aspect ratio of this mesh is 6.

The maximum aspect ratio present in the mesh is 6 (between the central control volume
and the adjacent ones). Perhaps this is a high aspect ratio for structured meshes, but it can be
seen more often in non-structured grids. The artificial kinetic energy added up by the pressure
gradient can be seen in Figure 6.
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Figure 6: (Artificial) kinetic energy added up by the pressure gradien contribution as a function
of time.

Figure 6 shows the point where the simulation starts to diverge (around t=37s). Until that
point, the artificial kinetic energy contribution by the pressure gradient remains small and nega-
tive, but suddenly it jumps to positive values, making the simulation unstable and finally blow-
ing it up. For the mid-point interpolator, higher aspect ratio control volumes are needed to blow
up the simulation, but examples can be found in Figure 1 or in [2] for a turbulent channel flow.

Finally, a discussion of the accuracy of the mid-point interpolator and the volumetric in-
terpolator will be done for a high-distroted mesh (see Figure 7). This mesh is not able to fully
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resolve the case, but will allow a comparison between the two interpolators.

Figure 7: Central part of the high-distorted mesh used to test the accuracy of the mid-point and
volumetric interpolator.

The normalized time-averaged values of the contributions to the global kinetic energy for
this particular distorted grid can be found in table 4 for the different interpolations. Besides, a
comparison with the Cartesian uniform grid results can be also found.

Interpolation Mean ∆t Conv Diff Buoyancy PressGrad Balance Sum
Mid-point (maxCo=1) 0.0126 ≈ 0 −1 1.97610 −0.77851 3.33×10−4

Volumetric (maxCo=1) 0.0138 ≈ 0 −1 1.90565 −0.93355 3.67×10−6

Mid-point (fixed ∆t) 0.0050 ≈ 0 −1 1.57681 −0.57593 1.35×10−6

Volumetric (fixed ∆t) 0.0050 ≈ 0 −1 1.43591 −0.43495 1.42×10−6

Mid-point (maxCo=1) 0.0126 1.31246 2.59466
Volumetric (maxCo=1) 0.0138 1.24703 2.37740

Mid-point (fixed ∆t) 0.0050 1.19875 1.89101
Volumetric (fixed ∆t) 0.0050 1.15685 1.66184

Table 4: Time-averaged normalized contributions to the global kinetic energy for different pres-
sure gradient interpolations for the distorted mesh (rows 1−4). The balance sum column refers
to the sum of all the non-normalized contributions. Normalized comparison of the resuts ob-
tained with the distorted mesh compared to the Cartesian uniform ones (rows 4−8).

For this comparison, two values of ∆t have been selected. The first one, referred in table
4 as maxCo=1 is selected at each time step such as the maximum Courant number is 1, while
the second selected time step is fixed (∆t = 0.005). For all the test cases, the convective term
contribution was almost zero (except round-off errors), as expected for a skew-symmetric con-
vective operator without boundary contributions. Observe that the mean ∆t for the volumetric
interpolator was higher than the mean ∆t for the mid-point.

Even though the selected mesh is not able to fully resolve the case, the balance between the
buoyancy and the diffusive term is always closer to 1 for the volumetric interpolator than for
the mid-point one. For the maxCo=1 case, while the pressure gradient contribution is very high
for both cases, the balance sum for the mid-point interpolator was much worse than the one
obtained for the volumetric one. Remarkably is the fact that reducing the time step improves
drastically the balances, and also reduces the pressure gradient contribution, as shown in Eq.(7).
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Finally, when comparing the results with the ones obtained with the Cartesian uniform grid,
the volumetric interpolator shows a much superior performance than the mid-point one, even
with higher time steps.

6. Conclusions

An unconditionally energy-preserving fractional step method for collocated grids have been
presented in this work. Within this framework, a comparison between the three classical ways to
interpolate the pressure gradient have been studied: linear interpolation, mid-point interpolation
and volumetric interpolation. The volumetric interpolator was shown to be unconditionally
stable even for high-distorted meshes, both theoretically and numerically.

Under low-distorted meshes, the performance in accuracy of the three interpolators have
been tested. While the three of them behaves similar acting in this kind of grids, it seems
that the mid-point gives slightly worse results, and the volumetric gives slightly better ones.
Furthermore, the linear interpolations quickly becomes unstable when the mesh is distorted.
Finally, the volumetric interpolator showed a superior performance in high-distorted meshes.
For this reasons, a volumetric interpolation seems to be the best option among these three to
interpolate the pressure gradient.
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conditionally stable fractional step method on collocated grids. 8th European Congress
on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2022, Oslo,
June 2022.

3. F.X. Trias, O. Lehmkuhl, A. Oliva, C.D. Pérez-Segarra, and R.W.C.P. Verstappen.
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