

Constant of Grey-Area Mitigation Techniques and their effects on Jet Aerodynamics and AeroAcoustics

CTTC UPC Centre Tecnològic de Transferència de Calor Laboratori de Termotècnia i Energètica UNIVERSITAT POLITÈCNICA DE CATALUNYA

Jesus Ruano¹, Alexey Duben ², Andrey Gorobets², F.Xavier Trias¹

¹Heat and Mass Transfer Technological Center, Technical University of Catalonia, Spain ²Keldysh Institute of Applied Mathematics, 4A, Miusskaya Sq., Moscow 125047, Russia

Abstract	Used codes	Jet Acoustics at far-field
This work explores different grey-area mitigation (GAM) methods towards achieving precise aerody- namics and aeroacoustics results of the subsonic tur- bulent round jet. The GAM technique used is based on a combination of 2D detecting LES models and new	In order to analyse the effect of the numerical scheme, two different codes will be tested: NOISEtte and Open- FOAM. The main differences among them are summarised:	NOISEtte, Grid 1 OpenFOAM, Grid 1 (g) 'TdSQR o dist+S3QR o dist+S3
adapting subgrid length scales. The numerical sim-	Characteristic NOISEtte OpenFOAM	
ulations are carried out on a set of refining meshes	FVM approach Vertex-centered Cell-centered	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
using two different scale-resolving codes: NOISEtte	Hybrid scheme Guseva et. al. 2017 Travin et. al. 2000	
and OpenFOAM. The results indicate that all the eval-	Central scheme 4th order 2nd order	

uated combinations offer appropriate accuracy in predicting noise and show the effect of both the numerical scheme and how subgrid eddy viscosity is modelled.

RANS-to-LES transition in jets

Upwind scheme5th order2nd orderTime integrationImplicit 2nd orderImplicit 2nd orderFWH equationRetarded timePhase shift

Used meshes

A set of three-refining hexahedral meshes is used to check results' convergence. The main characteristics of the coarser and finner mesh are:

Parameter	G1	G3
Nn	1.52M	8.87M
N_{arphi}	64	160
Δ_x/D at the nozzle exit	0.011	0.008
min (Δ_r/D) in the shear layer	0.003	0.0025
$r\Delta_{\varphi}/D$ in the shear layer	0.05	0.02

1/3rd-octave integrated spectrums at observer angle $\theta = 60^{\circ}$.

The accuracy of predicting jet-noise in the far-field region strongly depends on the accuracy of shear-layer evolution. Therefore, a robust numerical method able to quickly transition from RANS to LES is required.

Gray-Area Mitigation Techniques

The usual approach for Gray-Area Mitigation (GAM) techniques follows from the subgrid-eddy viscosity definition:

$$\nu_t = (C_{\text{LES}} \Delta_{\text{SGS}})^2 \cdot \mathcal{D}_{\text{LES}}(\overline{u}),$$

where Δ_{SGS} is the subgrid length scale, \mathcal{D}_{LES} is the LES model differential operator, \overline{u} is the filtered velocity, and C_{LES} is the LES constant.

Jet aerodynamics at centerline

1/3rd-octave integrated spectrums at observer angle $\theta = 150^{\circ}$.

Conclusions

- NOISEtte, i.e. high-accuracy schemes, provide better results than OpenFOAM, i.e. low-order schemes.
 Nonetheless, both codes have produced results with an excellent agreement to reference data.
- The joint usage of special subgrid length scales with 2D sensitive LES models is mandatory to obtain a

In order to provoke a faster transition from the RANS zone to the LES zone, ν_t should be decreased. This can be achieved by:

- Reducing Δ_{SGS} . Instead of using standard approaches, such as Δ_{Vol} or Δ_{Max} , using special subgrid length scales sensitive to the local flow parameters. Examples of this advanced Δ_{SGS} include, among others, Δ_{SLA} , $\tilde{\Delta}_{\omega}$, or Δ_{lsq} .
- Reducing \mathcal{D}_{LES} . This can be achieved locally by using LES models sensitive to two-dimensional flow patterns. Examples of these kind of models include σ , WALE, or S3QR.

faster RANS-to-LES transition.

References

 A.P. Duben *et al. "Evaluation of Enhanced Gray Area Mitigation Approaches Based on Jet Aeroacoustics"*, AIAA journal, 61 (2): 612-625, 2023.

A. Pont-Vilchez et al. "New strategies for mitigating the gray area in delayed-detached eddy simulation models", AIAA journal , 59 (9): 3331-3345, 2021.
F.X. Trias et al. "A new subgrid characteristic length for turbulence simulations on anisotropic grids", Physics of Fluids, 29 (1), 115109, 2017

10th International Symposium on Turbulence, Heat and Mass Transfer - THMT23

(1)

September 11-15, 2023, Rome, Italy