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Abstract – In this work, we plan to shed light on the following research question: can we hit the ultimate

regime of thermal turbulence using large-eddy simulations (LES) at low Prandtl numbers? This is motivated by

our recent findings showing the reliability of LES techniques at low-Pr where no subgrid heat flux activity is

expected. Hence, we are carrying out a set of LES simulations of a Rayleigh–Bénard configuration at Pr = 0.005

(liquid sodium) using two levels of refinement. According to our estimations the two highest Rayleigh numbers

(2.25× 1010 and 7.14× 1010) are located in the region of the {Ra,Pr}-phase space where the Nu Ra1/2 power-

law scaling of the ultimate regime should be observed. This asymptotic regime was theoretically predicted by

Kraichnan in the early 60s; however, despite the great efforts devoted, it still remains elusive.

1. Introduction

Buoyancy-driven flows have always been an important subject of scientific studies with nu-

merous applications in environment and technology. The most famous example thereof is the

thermally driven flow developed in a fluid layer heated from below and cooled from above,

i.e. the Rayleigh-Bénard convection (RBC). It constitutes a canonical flow configuration that

resembles many natural and industrial processes, such as solar thermal power plants, indoor

space heating and cooling, flows in nuclear reactors, electronic devices, and convection in the

atmosphere, oceans and the deep mantle.

In the last decades significant efforts, both numerically and experimentally, have been di-

rected at investigating the mechanisms and the detailed scaling behavior of the Nusselt number

as a function of Rayleigh and Prandtl numbers in the general form Nu ∝ RaγPrβ [1]. In this

regard, Figure 1 shows the predictions of the Nu-number based on the classical Grossmann-

Lohse (GL) theory [2] and its subsequent corrections [3, 4] where different scaling regimes,

characterized by their corresponding exponents γ and β , are identified. Assuming this power-

law scalings and following the same reasoning as in Ref. [5] leads to the estimations for the

number of grid points shown in Figure 2 (left). This corresponds to mesh resolution require-

ments for DNS and it clearly explains why nowadays DNS of RBC is still limited to relatively

low Ra-numbers [1]. However, many of the above-mentioned applications are governed by

much higher Ra numbers, located in the region of the {Ra,Pr} phase space where the thermal

boundary layer becomes turbulent (i.e. below the black dash-dotted line in Figure 2). This re-

gion corresponds to the so-called asymptotic Kraichnan or ultimate regime of turbulence [6],

with γ = 1/2. On the other hand, reaching such Ra-numbers experimentally while keeping

the basic assumptions (Boussinesq approximation, adiabaticity of the closing walls, isothermal

horizontal walls, perfectly smooth surfaces...) is a very hard task; therefore, the observation of

the Kraichnan regime also remains elusive [3, 4].
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Figure 1: Estimation of the Nusselt number of a RBC in the {Ra,Pr} phase space given by the classical

GL theory [2] and its subsequent corrections [3]. Green solid isolines represent the log10 of the Nusselt.

Three dashed horizontal lines correspond to three different working fluids: water (Pr = 7), air (Pr =

0.7) and liquid sodium (Pr = 0.005). Dots displayed correspond to the DNS simulations carried out

in previous studies [5, 7, 8]. Black dash-dotted line is an estimation for the onset of turbulence in the

thermal boundary layer.

2. LES of buoyancy-driven turbulence

In this context, we may turn to LES to predict the large-scale behavior of incompressible tur-

bulent flows driven by buoyancy at very high Ra-numbers. In LES, the large-scale motions are

explicitly computed, whereas the effects of small-scale motions are modeled. Since the advent

of CFD, many subgrid-scale (SGS) models have been proposed and successfully applied to a

wide range of flows. However, there still exist inherent difficulties in the proper modelization

of the SGS heat flux. This was analyzed in detail in the PRACE project entitled ”Exploring new

frontiers in Rayleigh–Bénard convection” (33.1 millions of CPU hours on MareNostrum 4 in

2018-2019), where DNS simulations of air-filled (Pr = 0.7) RBC up to Ra = 1011 were carried

out using meshes up to 5600M grid points (see dots displayed in Figures 1 and 2, left). These

results shed light into the flow topology and the small-scale dynamics [7]. Moreover, it also

provided new insights into the preferential alignments of the SGS and its dependence with the

Ra-numbers [8], highlighting that the modelization of the SGS heat flux is the main difficulty

that (still) precludes reliable LES of buoyancy-driven flows at (very) high Ra-numbers. This

inherent difficulty can be by-passed by carrying out simulations at low-Prandtl numbers. In this

case, the ratio between the Kolmogorov length scale and the Obukhov–Corrsin length scale (the

smallest scale for the temperature field) is given by Pr3/4; therefore, for instance, at Pr = 0.005

(liquid sodium) we have a separation of more than one decade. Hence, it is possible to combine

an LES simulation for the velocity field (momentum equation) with the numerical resolution of

all the thermal scales. Results obtained in Ref. [8] suggest that accurate predictions of the over-

all Nu can be obtained with meshes significantly coarser than those needed for a DNS (e.g. in

practice for Pr = 0.005 we can expect mesh reductions in the range 102-103 for the total num-

ber of grid points leading to computational cost reductions in the range 103-104). This can be

clearly observed in Figure 2 (right), where estimations of the mesh size for LES are given with
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Figure 2: Estimation of the mesh sizes for DNS (left) and LES (right) simulations of RBC in the

{Ra,Pr} phase space. LES estimations assume that thermal scales are fully resolved, i.e. no SGS heat

flux model is needed. Green solid isolines represent the log10 of the total number of grid points. Three

dashed horizontal lines correspond to three different working fluids: water (Pr = 7), air (Pr = 0.7) and

liquid sodium (Pr = 0.005). Dots displayed in the left figure correspond to the DNS simulations carried

out in previous studies [5, 7, 8] whereas the dots shown in the right figure are the set of LES simulations

(being) carried out in the present work. Black dash-dotted line is an estimation for the onset of turbulence

in the thermal boundary layer.

the assumption that thermal scales are fully resolved. This opens the possibility to reach the

ultimate regime carrying out LES at low-Pr using meshes.

3. Preliminary results and conclusions

A set of LES simulations of RBC at Pr = 0.005 for a wide range of Ra numbers (see dots in

Figure 2, right) are being carried out on MareNostrum 4 supercomputer. The configuration is

the same as in Ref.[8] where two DNS simulations (solid black dots in Figure 3) were computed

using meshes with 488×488×1280≈ 305M (Ra= 7.14×106) and 996×996×2048≈ 1911M

(Ra = 7.14×107) grid points, respectively. For the LES simulations, two levels of mesh refine-

ment are being used: namely, a fine level that approximately corresponds to estimations shown

in Figure 2 (right) and a coarse level which is approximately twice coarser in each spatial direc-

tion. For instance, LES meshes at Ra = 7.14×107 have respectively 44×44×96≈ 0.19M and

90× 90× 160 ≈ 1.3M grid points, i.e. ≈ 10000 and ≈ 1500 coarser compared with the DNS

mesh. Meshes are designed to properly resolve the boundary layer whereas the much coarser

bulk region is fine enough to guarantee that thermal scales are fully resolved, i.e. no SGS heat

flux model is needed. Then, the SGS stress tensor is modeled using the S3PQ model [9] which

was already tested for this RBC configuration in Ref. [8].

Results of the overall Nusselt number are displayed in Figure 3. LES simulations up to

Ra = 7.14×1010 (for the coarse level) and Ra = 2.26×1010 (for the fine level) are still being

computed on MareNostrum 4 supercomputer. These points are located beyond the transition

point for this Pr-number (see Figure 2, right). Nevertheless, these simulations are not statisti-

cally converged yet and, therefore, results are not shown here. At first sight, we can observe

an accurate agreement with previous DNS results. Furthermore, there is a rather good agree-

ment with the Nu-vs-Ra scaling predicted using the DNS data. In any case, these preliminary
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Figure 3: Nu-vs-Ra results obtained with LES at Pr = 0.005 using the same RBC configuration as in

Ref.[8] where the two DNS results (solid black dots) were computed. The vertical dash-dotted line corre-

sponds to the estimated Ra (for this particular Pr) where the thermal boundary layer becomes turbulent.

results show the capability to obtain accurate predictions of the Nu-number using LES simula-

tions. Accordingly to the classical GL theory, on-going LES simulations at higher Ra-number

should possibly show a change in the Nu-vs-Ra scaling indicating that we are finally hitting the

ultimate regime of thermal turbulence.
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