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Abstract – In this work, we aim to shed light on the following research question: can we hit the ultimate

regime of thermal turbulence using large-eddy simulations (LES) at low Prandtl numbers? This is motivated by

our recent findings showing the reliability of LES techniques at low-Pr where no subgrid heat flux activity is

expected. Hence, we are carrying out a set of LES simulations of a Rayleigh–Bénard configuration at Pr = 0.005

(liquid sodium) using two levels of refinement. According to our estimations the two highest Rayleigh numbers

(2.25×1010 and 7.14×1010) are located in the region of the {Ra,Pr}-phase space where the Nu ∝ Ra1/2 power-

law scaling of the ultimate regime should be observed. This asymptotic regime was theoretically predicted by

Kraichnan in the early 60s; however, despite the great efforts devoted, it still remains elusive.

1. Introduction

Buoyancy-driven flows have always been an important subject of scientific studies with nu-

merous applications in environment and technology. The most famous example thereof is the

thermally driven flow developed in a fluid layer heated from below and cooled from above, i.e.

the Rayleigh-Bénard convection (RBC). Figure 1 displays two examples of turbulent air-filled

RBC configurations. It constitutes a canonical flow configuration that resembles many natural

and industrial processes, such as solar thermal power plants, indoor space heating and cooling,

flows in nuclear reactors, electronic devices, and convection in the atmosphere, oceans and the

deep mantle.

In the last decades significant efforts, both numerically and experimentally, have been di-

rected at investigating the mechanisms and the detailed scaling behavior of the Nusselt number

as a function of Rayleigh and Prandtl numbers in the general form Nu ∝ RaγPrβ [1]. In this re-

gard, Figure 2 shows the predictions of the Nu-number based on the classical Grossmann-Lohse

(GL) theory [2] and its subsequent corrections [3, 4] where different scaling regimes, charac-

terized by their corresponding exponents γ and β , are identified. Assuming this power-law

scalings and following the same reasoning as in Ref. [5] leads to the estimations for the number

of grid points shown in Figure 5 (top). This corresponds to mesh resolution requirements for

direct numerical simulation (DNS) and it clearly explains why nowadays DNS of RBC is still

limited to relatively low Ra-numbers [1]. However, many of the above-mentioned applications

are governed by much higher Ra numbers, located in the region of the {Ra,Pr} phase space

where the thermal boundary layer becomes turbulent (i.e. below the black dash-dotted line in

Figure 2). This region corresponds to the so-called asymptotic Kraichnan or ultimate regime

of turbulence [6], with γ = 1/2. On the other hand, reaching such Ra-numbers experimentally

while keeping the basic assumptions (Boussinesq approximation, adiabaticity of the closing
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Figure 1: Visualization of instantaneous temperature fields of an air-filled (Pr = 0.7) RBC at

at Ra = 108 (left) and Ra = 1010 (right). Results correspond to the statistically steady state

of the DNS simulations studied in Refs. [5, 7] using meshes of 400×208×208 ≈ 17.3M and

1024×768×768 ≈ 604M, respectively.
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Figure 2: Estimation of the Nusselt number of a RBC in the {Ra,Pr} phase space given by

the classical GL theory [2] and its subsequent corrections [3]. Green solid isolines represent the

log10 of the Nusselt. Three dashed horizontal lines correspond to three different working fluids:

water (Pr = 7), air (Pr = 0.7) and liquid sodium (Pr = 0.005). Dots displayed correspond to the

DNS simulations carried out in previous studies [5, 7, 8]. Black dash-dotted line is an estimation

for the onset of turbulence in the thermal boundary layer.

walls, isothermal horizontal walls, perfectly smooth surfaces...) is a very hard task; therefore,

the observation of the Kraichnan regime also remains elusive [3, 4].

2. LES of buoyancy-driven turbulence

2.1 Antecedents and failure of the eddy-diffusivity models

In this context, we may turn to large-eddy simulation (LES) to predict the large-scale behavior

of incompressible turbulent flows driven by buoyancy at very high Ra-numbers. In LES, the
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Figure 3: Joint probability distribution functions (PDF) of the angles (α,β ) plotted on a half

unit sphere to show the orientation in the space of the mixed model [9]. From left to right,

alignment trends of the actual SGS heat flux, q, the Daly and Harlow [10] model and the Peng

and Davidson [11] model. For simplicity, the JPDF and the PDF magnitudes are normalized by

its maximal. For details the reader is referred to Ref. [12].

large-scale motions are explicitly computed, whereas the effects of small-scale motions are

modeled. Since the advent of CFD, many subgrid-scale (SGS) models have been proposed

and successfully applied to a wide range of flows [13]. However, there still exits inherent

difficulties in the proper modelization of the SGS heat flux. This was analyzed in detail in the

PRACE project entitled ”Exploring new frontiers in Rayleigh-Bénard convection” (33.1Mh on

MareNostrum 4), where DNS simulations of air-filled (Pr = 0.7) RBC up to Ra = 1011 were

carried out using meshes up to 5600M grid points (see dots at Pr = 0.7 displayed in Figure 2

and Figure 5, top). These results shed light into the flow topology and the small-scale dynamics

which are crucial in constructing the turbulent wind and energy budgets [7]. Moreover, it also

provided new insights into the preferential alignments of the SGS and its dependence with the

Ra-numbers [8], highlighting that the modelization of the SGS heat flux is the main difficulty

that (still) precludes reliable LES of buoyancy-driven flows at (very) high Ra-numbers.

Shortly, LES equations arise from applying a spatial commutative filter, (·), with filter

length δ , to the incompressible Navier-Stokes and thermal energy equations,

∂u

∂ t
+(u ·∇)u =

√

Pr

Ra
∇2u−∇p+ f −∇ · τ, (1)

∂T

∂ t
+(u ·∇)T =

1√
PrRa

∇2T −∇ ·q, (2)

where u, T and p are respectively the filtered velocity, temperature and pressure, and the in-

compressibility constraint reads ∇ · u = 0. The SGS stress tensor, τ = u⊗u− u⊗ u, and the

SGS heat flux vector, q = uT −uT , represent the effect of the unresolved scales, and they need

to be modeled in order to close the system. The most popular approach is the eddy-viscosity

assumption, where the SGS stress tensor is assumed to be aligned with the local rate-of-strain

tensor, S= 1/2(∇u+∇ut), i.e. τ ≈−2νeS(u).
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By analogy, the SGS heat flux, q, is usually approximated using the gradient-diffusion hypoth-

esis (linear modeling), given by

q ≈−κt∇T (≡ qeddy). (3)

Then, the Reynolds analogy assumption is applied to evaluate the eddy-diffusivity, κt , via a

constant turbulent Prandtl number, Prt , i.e. κt = νe/Prt . These assumptions have been shown to

be erroneous to provide accurate predictions of the SGS heat flux [12, 9, 14]. Namely, a priori

analysis showed that the eddy-diffusivity assumption, qeddy (Eq. 3), is completely misaligned

with the actual subgrid heat flux, q (see Figure 3, left). In contrast, the tensor diffusivity (non-

linear) Leonard model [15], which is obtained by taking the leading term of the Taylor series

expansion of q,

q ≈ δ 2

12
G∇T (≡ qnl), (4)

provides a much more accurate a priori representation of q (see Figure 3, left). Here, G ≡
∇u represents the gradient of the resolved velocity field. It can be argued that the rotational

geometries are prevalent in the bulk region over the strain slots, i.e. |Ω|> |S| (see Refs [12, 5]).

Then, the dominant anti-symmetric tensor, Ω= 1/2(G−G∗), rotates the thermal gradient vector,

∇T , to be almost perpendicular to qnl (see Eq.4). Hence, the eddy-diffusivity paradigm is only

valid in the not-so-frequent strain-dominated areas.

2.2 LES at very low Prandtl numbers

This inherent difficulty can be by-passed by carrying out simulations at low-Prandtl numbers.

In this case, the ratio between the Kolmogorov length scale and the Obukhov-Corrsin length

scale (the smallest scale for the temperature field) is given by Pr3/4; therefore, for instance, at

Pr = 0.005 (liquid sodium) we have a separation of more than one decade. Hence, it is possible

to combine an LES simulation for the velocity field (momentum equation) with the numerical

resolution of all the thermal scales. Results displayed in Figure 4 seem to confirm the adequacy

of eddy-viscosity models for this kind of flows. Namely, Figure 4 (left) shows the Nusselt

number for a set of meshes and eddy-viscosity models: the WALE model [16], the Vreman

model [17], the QR model [18] and the S3QR model [19]. Results obtained without SGS model

are also shown to illustrate the effect of the eddy-viscosity models to improve the solution. At

first sight it can be observed that, in general, all LES solutions are in rather good agreement with

the DNS data even for the coarsest grids (48× 26× 26 for Ra = 7.14× 106 and 96× 52× 52

for Ra = 7.14×107 whereas only the finest ones (128×72×72 and 192×104×104 at Ra =
7.14×106 and 512×288×288 at Ra= 7.14×107) can provide accurate results when the model

is switched off. A closer inspection shows that slightly better results are obtained for those eddy-

viscosity models (WALE and S3QR) that have the proper near-wall behavior, i.e. νe =O(y3). To

emphasize the benefits of LES modeling, the approximate computational cost of the simulations

is displayed in the top horizontal axis of Figure 4 (left): it was measured on the MareNostrum 4

supercomputer and corresponds to a total integration period of 500 time-units. Finally, to see

the effect of eddy-viscosity models in more detail, results for the average turbulent kinetic

energy are shown in Figure 4 (right) for two meshes and two eddy-viscosity models (WALE

and S3QR). All these results seem to confirm the suitability of the eddy-viscosity assumption

for buoyancy-driven flows. For more details the reader is referred to Ref. [8].
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Figure 4: Comparison of LES (and no-model) versus DNS results of liquid-sodium (Pr = 0.005)

RBC at Ra = 7.14× 106 and 7.14× 107. Left: average Nusselt for different meshes at Ra =
7.14× 106 (top) and Ra = 7.14× 107 (bottom). Corresponding computational costs at the

MareNostrum 4 supercomputer are shown in the top of the plots. Right: LES results of turbulent

kinetic energy at cavity mid-width for a 64×36×36 (top) and 96×52×52 (bottom) meshes

compared with the DNS results obtained with a mesh of 488×488×1280 ≈ 305M.

3. Preliminary results and conclusions

The results presented in the previous section confirm that low-Pr LES simulations are able to

provide accurate predictions of the overall Nu with meshes significantly coarser than for DNS

(e.g. in practice for Pr = 0.005 we can expect mesh reductions in the range 102-103 for the total

number of grid points). This can be clearly observed in Figure 5 (bottom), where estimations

of the mesh size for LES are given with the assumption that thermal scales are fully resolved.

This huge gain becomes even more evident in Figure 6 where the number of CPU-core hours

(on the basis of MareNostrum 4 supercomputer) is estimated both for DNS and LES. In this

case, the difference between DNS and LES goes up to O(104) due to the fact that not only

the mesh resolution decreases but also the total number of time-steps. Nowadays, the typical

size of a Tier-0 project is O(108) hours. Therefore, according to the estimations displayed in

Figure 6, the so-called ultimate regime of turbulence can be potentially reached carrying out

LES at low-Pr using meshes of 1010-1011 grid points.
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Figure 5: Estimation of the mesh sizes for DNS (top) and LES (bottom) simulations of RBC

in the {Ra,Pr}-phase space. LES estimations assume that thermal scales are fully resolved,

i.e. no SGS heat flux model is needed. Green solid isolines represent the log10 of the total

number of grid points. Three dashed horizontal lines correspond to three different working

fluids: water (Pr = 7), air (Pr = 0.7) and liquid sodium (Pr = 0.005). Dots displayed in the

left figure correspond to the DNS simulations carried out in previous studies [5, 7, 8] whereas

the dots shown in the bottom figure are the set of LES simulations (being) carried out in the

present work. Black dash-dotted line is an estimation for the onset of turbulence in the thermal

boundary layer.

In this regard, a set of LES simulations of RBC at Pr = 0.005 for a wide range of Ra num-

bers (see dots in Figure 5, bottom) are being carried out on MareNostrum 4 supercomputer.

The configuration is the same as in Ref.[8] where two DNS simulations (solid black dots in
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Figure 6: Same as in Figure 5 but for the cost of simulations in CPU-core hours. Estimations

done for the MareNostrum 4 supercomputer at the Barcelona Supercomputing Center. Each

computing node has two Intel Xeon 8160 (24 cores, 2.1 GHz, 33 MB L3 cache and 128 GB/s

memory bandwidth) linked to 96GB of RAM and interconnected through 12.5 GB/s Intel Omni-

Path. Overall computational cost corresponds to 500 time-units.

Figure 7) were computed using meshes with 488×488×1280 ≈ 305M (Ra = 7.14×106) and

996× 996× 2048 ≈ 1911M (Ra = 7.14× 107) grid points, respectively. For the LES simula-

tions, two levels of mesh refinement are being used: namely, a fine level that approximately

corresponds to estimations shown in Figure 5 (bottom) and a coarse level which is approxi-

mately twice coarser in each spatial direction. For instance, LES meshes at Ra = 7.14× 107

have respectively 44× 44× 96 ≈ 0.19M and 90× 90× 160 ≈ 1.3M grid points, i.e. ≈ 10000

and ≈ 1500 coarser compared with the DNS mesh. Meshes are designed to properly resolve the

boundary layer whereas the much coarser bulk region is fine enough to guarantee that thermal
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Figure 7: Nu-vs-Ra results obtained with LES at Pr = 0.005 using the same RBC configuration

as in Ref.[8] where the two DNS results (solid black dots) were computed. The vertical dash-

dotted line corresponds to the estimated Ra (for this particular Pr) where the thermal boundary

layer becomes turbulent.

scales are fully resolved, i.e. no SGS heat flux model is needed. Then, the SGS stress tensor

is modeled using the S3PQ model [19] which was already tested for this RBC configuration in

oru previous work [8].

Results of the overall Nusselt number are displayed in Figure 7. LES simulations up to

Ra = 7.14×1010 (for the coarse level) and Ra = 2.26×1010 (for the fine level) are still being

computed on MareNostrum 4 supercomputer. These points are located beyond the transition

point for this Pr-number (see Figure 5, right). Nevertheless, these simulations are not statisti-

cally converged yet and, therefore, results are not shown here. At first sight, we can observe

an accurate agreement with previous DNS results. Furthermore, there is a rather good agree-

ment with the Nu-vs-Ra scaling predicted using the DNS data. In any case, these preliminary

results show the capability to obtain accurate predictions of the Nu-number using LES simula-

tions. Accordingly to the classical GL theory, on-going LES simulations at higher Ra-number

should possibly show a change in the Nu-vs-Ra scaling indicating that we are finally hitting the

ultimate regime of thermal turbulence.

Extending these studies to finer grids and higher Ra numbers is part of our near future

research plans. Furthermore, these (large-scale) simulations should run efficiently on the variety

of modern HPC systems (CPUs, GPUs, ARM,...) while keeping the code easy to port and

maintain. In this regard, our leitmotiv reads: relying on a minimal set of (algebraic) kernels [20,

21] (e.g. sparse-matrix vector product, SpMV; dot product; linear combination of vectors) is

crucial for an efficient cross-platform portability and optimization.
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