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Abstract – Direct numerical simulations of the incompressible Navier-Stokes equations at high Reynolds num-
bers are not yet feasible, so dynamically less complex mathematical formulations such as Large Eddy Simulation
(LES) have been developed. For the well-known eddy-viscosity models for LES, the computational method is
based on the combination of invariants of a symmetric tensor that depends on the gradient of the resolved ve-
locity field, G = ∇u. Brand-new models (namely S3PQR) have been developed using the first three principal
invariants of the symmetric tensor GGT with excellent results. Therefore, in this work, we will focus on the
application of the S3PQR and other LES models on the free boundary layer case. Then, we will test their
performances over a fully developed boundary layer wind farm, using a simplified model of a wind turbine.

1. Introduction
Large Eddy Simulation (LES) equations result from applying a spatial filter to the incompress-
ible Navier-Stokes equations, yielding:

∂tu+C(u,u) = D(u)−∇p−∇ · τ(u); (1)
∇ ·u = 0

where u is the filtered velocity and τ(u) is the subgrid stress (SGS) tensor that approximates the
effect of the under-resolved scales.

This equation needs a closure model in order to be numerically solved. The LES closure is
of the type τ(u)≈−2νeS(u) where S(u) = 1/2(∇u+∇uT ) is the rate-of-strain tensor. We must
define an eddy viscosity: νe = (Cm∆)2Dm(u) where Cm is the model constant, ∆ is the subgrid
characteristic length, and Dm(u) is the differential operator with units of frequency associated
with the model [1].

The S3PQR models involve invariants of the symmetric tensor GGT . The different types
of S3PQR models are obtained by restricting them to solutions with only two of those invari-
ants [2]. The three different obtained models are ν

S3PQ
e ,νS3PR

e ,νS3QR
e or for simplicity, PQ, PR,

QR. There are two ways to determine the model constant:
1. Imposing numerical stability and less or equal dissipation than Vreman’s model. Then,

Cs3pq =Cs3pr =Cs3qr =
√

3CV r ≈ 0.458
2. Granting that the averaged dissipation of the models is equal to that of the Smagorinsky

model. Then,
Cs3pq = 0.572, Cs3pr = 0.709, Cs3qr = 0.762

Therefore, there are six possible combinations to test (3 model types x 2 constants) that
we will call PQ1, PQ2, and so on. The general algorithm for a boundary layer is based on
the method proposed by Spalart and Leonard (1987) [3], which includes normal coordinate
similarity transformations, growing terms GT (u,U) and scaling factors.
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There are some differences with our (pseudo-spectral) implementation, though. First, our
algorithm is based on the strong formulation of the Navier-Stokes equations with a Poisson -
pressure correction term. Second, we use the standard algebraic scaling [4], y∞ = L1+y

1−y , for the
the semi-infinite domain over the normal direction. Finally, the computation relies on a fully
explicit second-order time-integration method [5]. We will test the zero mean pressure gradient
case.

2. Model Deployment and First Results
For all the current computations, the grid size of the domain is Nx = 32, Ny = 64, and Nz =
32 points, where x, y, and z, are the streamwise, wall-normal, and spanwise directions. The
Reynolds number is fixed along the simulation to Reδ = 1000, where δ is the displacement
thickness.

2.1 Boundary layer
First, we deal with the free boundary layer cases without the turbine model. To compare the LES
models and the Spalart and Leonard (1987) [3] results, we can list three main parameters: uτ as
the friction velocity, H as the ratio of the displacement thickness to the momentum thickness,
and κ as the Von Kármán constant (see Table 1, where Sp-Le stands for the reference values).

Table 1: boundary layer characteristic parameters calculated for each model

Case: Sp-Le No model Vreman WALE PQ1 PR1 QR1 PQ2 PR2 QR2
uτ 0.049 0.048 0.047 0.046 0.048 0.049 0.049 0.047 0.047 0.048
H 1.52 1.57 1.57 1.55 1.57 1.55 1.56 1.56 1.57 1.56
κ 0.39 0.36 0.45 0.44 0.36 0.40 0.37 0.36 0.36 0.39
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Figure 1: Case PQ2, present results. Left: normalized average streamwise velocity profile, U+;
log law; U+ = y+. Right: rms u+; rms v+; rms w+

The Smagorinsky method did not yield meaningful results with the current algorithm (in-
correct near-wall behavior). The rest of LES models give reasonable results, with PQ2 standing
by now as the best in the global analysis. As an example of the performance of PQ2, we plot
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the velocity profile and the root mean square of the velocities (figure 1). Thus so far we have
obtained reliable results with low computational effort for the free boundary layer.

2.2 Wind farm
We will follow the model stated by [6] which is based on the concept of a disk actuator for every
wind turbine. The force of the turbine (per unit mass), in the streamwise direction, at a given
grid point i, j,k, is given by

F(i, j,k) =−1
2

C′
T ⟨uT ⟩2

d
γ j,k

∆x

where C′
T is a thrust coefficient, ⟨uT ⟩2

d is the disk averaged local velocity, γ j,k is the fraction
area overlap of the disk and ∆x is the distance between turbines. This disk actuator model can
be straightforwardly applied to our algorithm. We will compute our wind farm with the same
number and array geometry of the turbines that a specific case of the reference: 24 disk actuators
evenly distributed in four rows and six columns.

However, all the other configuration parameters, like the Reynolds number, the supply of
energy, and the wall boundary conditions, are far different. So, at this moment the comparison
can only rely on the general behavior of the vertical profiles and the magnitude orders of the
values. We will show here only the results for the PQ2 algorithm. The complete comparison
between all the models will be presented in the full-length paper.

Some of the several quantities that may be of interest are listed in Table 2. The meaning of
the terms are as follows: z0Hi/zH, as the ratio of the effective roughness above the turbine hub
and the height of the turbines’ center; uτ , the usual friction velocity at the wall; u∗, the computed
friction velocity above the hub; P, the time and horizontally averaged power extracted for every
turbine; Wt , the time, horizontally, and vertically (along the hub) averaged power. Finally, the
term EB (for energy budget) is the balance between all the energy contribution terms. For a
perfect match, it should be 100% (the reference achieves 98%).

Table 2: some computed useful quantities of a wind farm simulation

PQ2 z0Hi/zH uτ u∗ uτ/u∗ P/u3
∗ Wt/u3

∗ EB
Results 0.176 0.053 0.115 0.46 0.68 0.83 93%

As shown in [6], we can expect the presence of two well-defined log laws along the vertical
velocity profile. In Figure 2, it can be seen that this condition is fulfilled. Moreover, the different
terms of the energy budget shown at the right of this Figure 2 follow the same patterns as
the reference. Therefore, the S3PQR algorithms are well-suited to be applied to wind farm
simulations.
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Figure 2: Left: average streamwise velocity. The green vertical line is the position of the bottom
of the turbine hub. The red line is the top. Note the law of the wall, and the two log laws. Right:
Normalized mean kinetic energy contributions: flux, −< uv >U/u3

∗; GT, normalized growing
terms; diss, −< uv > ∂yU/(u3

∗/δ )
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