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Abstract – Direct numerical simulations of the incompressible Navier-Stokes equations at high Reynolds num-
bers are not yet feasible, so dynamically less complex mathematical formulations such as Large Eddy Simulation
(LES) have been developed. For the well-known eddy-viscosity models for LES, the computational method is
based on the combination of invariants of a symmetric tensor that depends on the gradient of the resolved veloc-
ity field, G= ∇u. Several models (namely S3PQR) have been developed using the first three principal invariants
of the symmetric tensor GGT with excellent results. Therefore, in this work, we will focus on the application of
the S3PQR and other LES models on the free boundary layer case. Then, we will test their performances over
a fully developed boundary layer wind farm, using a simplified model of a wind turbine.

1. Introduction
The most useful tool to deal with turbulent flow is the incompressible Navier Stokes formu-
lation. However, for large Reynolds numbers, that is, when it exists many relevant scales of
motion of the flow, the direct numerical simulation is unfeasible or a very highly demanding re-
sources procedure. To try and solve the problem, a number of mathematical methods have been
created. However, if they are to be effective in addressing specific challenges, it is necessary
to discriminate between them. The Large Eddy Simulation LES equations are derived from the
application of a spatial filter to the incompressible Navier Stokes equations:

∂tu+C(u,u) = D(u)−∇p−∇ · τ(u); (1)
∇ ·u = 0

where u is the filtered velocity and τ(u) is the subgrid stress (SGS) tensor that approximates the
effect of the under-resolved scales.

This equation needs a closure model to be numerically solved. The LES closure is of
the type τ(u) ≈ −2νeS(u) where S(u) = 1/2(∇u+∇uT ) is the rate-of-strain tensor. We must
define an eddy viscosity: νe = (Cm∆)2Dm(u) where Cm is the model constant, ∆ is the subgrid
characteristic length, and Dm(u) is the differential operator with units of frequency associated
with the model [1].

As Menevau and Katz[2] point out, most successful tests typically use spectral methods
and cutoff filtering on homogeneous directions. Our approach, then, is that of a pseudo-spectral
algorithm.

To assure the validity of any of the models, usually, they are tested on what are called
benchmark cases and compared with experimental results. These cases are, for example, the
channel flow, the sink flow, the homogeneous isotropic turbulence, the boundary layer, and so
on.
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Besides, there are some technical specifications of the algorithm that could yield different
performances of the model. That is, for example, the time-stepping procedure, the characteristic
of the domain, or the mathematical approximations.

2. Review of S3PQR Theory
Besides the trace, several mathematical invariants can be calculated from the gradient tensor
G= ∇u, namely:

{QG,RG,QS,RS,V 2
G}

For this second-order tensor G, they are defined as [3]

QG = (1/2)(tr2(G)− tr(G2)) (2)
RG = det(G)
QS = (1/2)(tr2(S)− tr(S2))

RS = det(S)
V 2
G = 4(tr(S2Ω2)−2QSQΩ)

where S= 1/2(G+GT ) and Ω= 1/2(G−GT ) are the symmetric and the skew-symmetric parts
of the gradient tensor, respectively. For any incompressible flux, any invariant can be written as
a function of them

Most of the models of the LES algorithms are based on combinations of invariants [1] of
some tensor depending on the gradient of the velocity. For example, they are the Smagorinsky
model [4], Vreman’s [5], WALE [6], or the S3PQR models [3]:

• Smagorinsky[4] model ν
Smag
e = f (QS)

• Verstappen’s[7] model νVe
e = f (RS,QS)

• WALE model[6] νW
e = f (QG,V,QS)

• Vreman’s model[5] νV r
e = f (V,QG,QΩ,QS)

• σ -model[1] νσ
e = f (λ1,λ2,λ3) where λ1,λ2,λ3 are the GGT tensor eigenvalues

The S3PQR models[3] involve three invariants of the symmetric tensor GGT formally based
on the lowest-order approximation of the subgrid stress tensor[8],

τ(u) =
∆2

12
GGT +O(∆4) (3)

These invariants are directly related to the previous ones

PGGT = tr(GGT ) = 2(QΩ−QS) (4)
QGGT = 2(QΩ−QS)

2 −Q2
G+4tr(S2Ω2)

RGGT = det(GGT ) = det(G)det(GT ) = R2
G

So now one can construct new models[3] of the form νe = (Cs3pqr∆)
2Pp

GGT Qq
GGT Rr

GGT

If we restrict them to solutions involving only two invariants, then we define:
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ν
S3PQ
e = (Cs3pq∆)2P−5/2

GGT Q3/2
GGT (5)

ν
S3PR
e = (Cs3pr∆)

2P−1
GGT R1/2

GGT (6)

ν
S3QR
e = (Cs3qr∆)

2Q−1
GGT R5/6

GGT (7)

An important property of each of the S3PQR model is its 2D behaviour[1, 3]: only RGGT -
dependent models switch off for 2D flows, so S3PR and S3QR models are preferable in this
case.

Further characteristics of these LES models are positiveness, locality, Galilean invariance,
and proper near-wall behaviour[9] (O(y3) dependence on normal direction).

2.1 Test cases
Finally, there are two ways to determine the model constant for the S3PQR models:

1. Imposing numerical stability and less or equal dissipation than Vreman’s model. Then,
Cs3pq =Cs3pr =Cs3qr =

√
3CV r ≈ 0.458

2. Granting that the averaged dissipation of the models is equal to that of the Smagorinsky
model. Then,

Cs3pq = 0.572, Cs3pr = 0.709, Cs3qr = 0.762
Therefore, we will call six possible combinations to test (3 model types x 2 constants) PQ1,

PQ2, and so on. Added to them, we will also run the no-model algorithm, Smagorinsky’s,
Vreman’s, and WALE ones.

In some cases, there have already been found differences in the numerical results depending
on the constant chosen. For example, simulations of decaying isotropic turbulence have shown
that only the last values provide the right SGS dissipation[3].

We will test the zero mean pressure gradient case.

3. Pseudo-spectral Algorithms
Pseudo-spectral methods have been shown to provide a high level of resolution for derivatives,
and are seen as an excellent tool where periodic conditions[10] can be applied. These algo-
rithms, however, require a strict presence of periodicity. But one of the main features of the
boundary layer case is that it continually develops over the streamwise direction, so it is in no
way periodic.

It is necessary then to use a different approach like the method proposed by Spalart[11, 12],
which includes normal coordinate similarity transformations, growing terms GT (u,U), and
several other assumptions. Since our objective is to check whether the S3PQR models can
be adapted to the special characteristics of the boundary layer in a pseudo-spectral manner, we
will not discuss further the validity of the periodic configuration.

We are working through a pseudo-spectral method[13], with Fourier expansion in the stream-
wise and spanwise directions, and Chebyshev expansion for the normal one. It is implemented
on the structured non-staggered grid. It applies the 3/2 rule de-aliasing technique. The tempo-
ral scheme is a fully-explicit second-order Adams-Bashforth time-integration method, and the
computation code is based on MPI parallelization.

With these features, the models have been tested and validated for the homogeneous isotropic
turbulence case[3], both in the decaying and forced simulations, showing good results compared
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with classical Comte-Bellot & Corrsin experiment[14], for example. The channel flow [15] has
also been tested and compared with the DNS of Moser et al.[16], yielding again proof of valid-
ity.

The general structure of the algorithm for the specific case of the boundary layer is a direct
adaptation of the channel flow code, already successfully tested[13, 3]. It is based on the strong
formulation of the Navier-Stokes equations with a Poisson - pressure correction term. The main
changes are, as expected, on the initial velocity field, the boundary conditions, the algebraic
scaling, and the Poisson solver.

The boundary conditions are the usually prescribed ones:

y = 0 → u,v,w = 0 (8)
y = ∞ →< u >= 1;v,w = 0 (9)

3.1 Semi-infinite domain
One of the key issues of the boundary layer simulations is the semi-infinite domain and the
scaling procedure over the normal direction, from yε[0,∞). The Navier-Stokes must be refor-
mulated in the presence of this scaling factor (sc):

∂tu+Csc(u,u)+GT (u,U) = Dscu−∇sc p−∇sc · τ(u); (10)
∇sc ·u = 0

For all the calculations, we have used the standard algebraic scaling[10]

y∞ = L
1+ y1

1− y1
smooth [0,∞) (11)

sc[y1] ≡ dy1

dy∞

smooth [2/L,0]

where y∞ means the normal coordinate from 0 to ∞, and y1 from −1 to 1 (the usual prescription
for Chebyshev transforms), L is a parameter and sc[y1] means the scaling factor. The prescrip-
tion of the L parameter is somewhat arbitrary: the value is barely related to the number of points
in the normal direction[10]. We have fixed the value to L = 2.5.

For clarity, we show the change that the scaling produces in some of the terms of the Navier-
Stokes equations. So, for the x or streamwise direction:

• The convective term:

u
∂u
∂x

+ v · sc[y1]
∂u
∂y1

+w
∂u
∂ z

(12)

• The diffusive term:

ν(
∂ 2u
∂x2 + sc[y1]

∂

∂y1
(sc[y1]

∂u
∂y1

)+
∂ 2u
∂ z2 ) (13)

• The Poisson equation:

∂ 2P
∂x2 + sc[y1]

∂

∂y1
(sc[y1]

∂P
∂y1

)+
∂ 2P
∂ z2 =

∂u
∂x

+ sc[y1]
∂v
∂y1

+
∂w
∂ z

(14)



D. Folch et al.

It also introduces spurious terms that must be removed.

• The S3PQR algorithm

∂

∂x
(νe[x,y,z]

∂u
∂x

)+ sc[y1]
∂

∂y1
(νe[x,y,z] · sc[y1]

∂u
∂y1

)+
∂

∂ z
(νe[x,y,z]

∂u
∂ z

) (15)

The scaling factor enters into the νe calculation via the ∆ subgrid characteristic length and
the several invariants involved.

4. Model Deployment and First Results
For all the current computations, the grid size of the domain is Nx = 32, Ny = 64, and Nz =
32 points, where x, y, and z, are the streamwise, wall-normal, and spanwise directions. The
Reynolds number is fixed along the simulation to Reδ ∗ = 1000, where δ ∗ is the displacement
thickness.

4.1 Boundary layer
First, we deal with the free boundary layer cases without the turbine model. As we have said
before, the structure of the algorithm for a boundary layer is based on the method proposed by
Spalart and Leonard (1987) [11].

To compare the LES models and the Spalart and Leonard (1987) [11] results, we can list
three main parameters: uτ as the friction velocity, H as the ratio of the displacement thickness
to the momentum thickness, and κ as the Von Kármán constant (see Table 1, where SL stands
for the reference DNS values).

Table 1: boundary layer characteristic parameters calculated for each model. First column
results from reference. Grid size for all the other cases: 32x64x32. Vr. as Vreman’s model

Case: SL No mod. Vr. WALE PQ1 PR1 QR1 PQ2 PR2 QR2
uτ 0.049 0.049 0.050 0.046 0.048 0.050 0.049 0.046 0.049 0.048
H 1.52 1.61 1.51 1.54 1.58 1.54 1.57 1.57 1.53 1.57
κ 0.39 0.35 0.47 0.47 0.35 0.44 0.35 0.42 0.39 0.32

The Smagorinsky method did not yield meaningful results with the current algorithm (in-
correct near-wall behavior). The rest of the LES models give reasonable results. All of the
S3PQR cases present comparable values, with PR2 standing as nearly the best in the global
analysis. As an example of the performance of this model, we plot the velocity profile and the
root mean square of the velocities (Figure 1). The main differences between the models can
be seen in plotting the derivative of the velocity profile y+du+/dy+ (see Figure 2). As Spalart
recalls in his work [12], the logarithmic layer corresponds to the minimum, and the value of κ

is thus determined, despite the noise due to the lack of resolution. Moreover, the values of the
maxima can be directly compared with that of Spalart.

We can also plot the rms u+ values for all of them (Figure 3) yielding no further discrimi-
nation between the models, but as a demonstration of their similar performance.

Then we can confidently say that S3PQR models capture the general trend. Besides, the
PR2 model values are within the range of the expected ones. Moreover, PR2 also performs
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Figure 1: Case PR2, present results. Left: normalized average streamwise velocity profile, U+;
log law; U+ = y+. Right: rms u+; rms v+; rms w+; δ is the boundary layer thickness
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Figure 2: y+du+/dy+ vs y+. Left: S3PQR models. Right: comparison with other LES models.
The horizontal line marks the point(s) where the log law would be with κ = 0.4

better than Vreman, WALE, or no-model algorithms. Thus so far we have obtained reliable
results with low computational effort for the free boundary layer.

4.2 Wind farm
We will follow the model stated by Calaf et al [17]. They rely on the concept of a fully developed
boundary layer to use periodic conditions, whereas we work with the assumptions of Spalart as
we have seen.

They also develop the concept of a disk actuator for every wind turbine. The force of the
turbine (per unit mass), in the streamwise direction, at a given grid point i, j,k, is given by

F(i, j,k) =−1
2

C′
T ⟨uT ⟩2

d
γ j,k

∆x

where C′
T is a thrust coefficient, ⟨uT ⟩2

d is the disk averaged local velocity, γ j,k is the fraction area
overlap of the disk and ∆x is the distance between turbines.

This disk actuator model can be straightforwardly applied to our algorithm. We will com-
pute our wind farm with the same number and array geometry of the turbines that a specific case
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Figure 3: rms u+. Left: S3PQR models. Right: comparison with other LES models

of the reference: 24 disk actuators evenly distributed in four rows and six columns (see Figure
4). Later on, we will change this geometrical configuration.
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Figure 4: Geometrical layout of the disk actuators. Ranges expressed in terms of the 48x48
de-aliasing 3/2 rule domain. Arrows pointing as a sketch of the velocity at the top

However, there are differences in all other configuration parameters such as Reynolds’ num-
ber, energy supply, and wall boundary conditions. Moreover, the adaptation of Spalart’s bound-
ary layer method to that of the wind farm poses some challenges. First of all, the growing
terms of Spalart that supply energy to the system rely on the existence of one single log law and
its transition to a velocity defect law. The main parameter is friction velocity. In the case of
the wind farm, we expect two log laws [17] with two defined friction velocities. The solution
adopted in this case is simply an average between the two friction velocities, so the error for the
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growing terms is, at least, reasonably bounded.
Therefore, a comparison can be based only on the horizontal profile behavior and magnitude

order of values at this time. In Figure 5, on the left, we show the results for the velocity profile
with PR2. On the right, some energy terms values. In Figure 6, the general behavior of the
velocity profile for all of them.
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Figure 6: Velocity profiles. Left: S3PQR. Right: other LES models. The no-model discrepancy
could be due to a miscalculated u∗ because no second log law is apparent

Some of the several quantities that may be of interest are listed in Table 2. The meaning of
the terms is as follows:

z0Hi/zH, as the ratio of the effective roughness above the turbine hub and the height of the
turbines’ center (it should be written y0Hi/yH but we used the reference nomenclature);

uτ , the usual friction velocity at the wall;
u∗, the computed friction velocity above the hub; P, the time and horizontally averaged

power extracted for every turbine;
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Wt , the time, horizontally, and vertically (along the hub) averaged power;
δΦ, the vertical flux of kinetic energy;
Finally, the term EB (for energy budget) is the balance between all the energy contribution

terms. For a perfect match, it should be 100% (the reference achieves 98%).
All the magnitudes are of the same order as reference. From the column of P/δΦ, it

is observed that it also reproduces the observed behavior that the wind turbines, in a fully
developed boundary layer regime, extract kinetic energy using vertical fluxes.

Table 2: some computed useful quantities of a wind farm simulation. Grid size:32x64x32

MODEL z0Hi/zH uτ u∗ uτ/u∗ P/δΦ Wt/δΦ EB
no model 0.160 0.051 0.109 0.47 0.68 0.81 94%
Vreman 0.072 0.056 0.085 0.66 0.67 0.78 94%
WALE 0.082 0.050 0.089 0.56 0.79 0.90 94%
PQ1 0.096 0.052 0.092 0.57 0.75 0.86 96%
PR1 0.105 0.052 0.094 0.55 0.74 0.85 95%
QR1 0.123 0.052 0.100 0.52 0.73 0.84 95%
PQ2 0.074 0.052 0.085 0.61 0.75 0.86 95%
PR2 0.065 0.052 0.083 0.63 0.77 0.88 97%
QR2 0.098 0.052 0.093 0.56 0.74 0.86 95%
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Figure 7: y+du+/dy+. All the values normalized by u∗; left: S3PQR models. Right: other LES
models. Note the presence of one or two minima corresponding to the log laws. The horizontal
line shows the expected second log law with, by definition, κ = 0.4 Note too, that in cases
where it is present, it appears approximately in the same position

Recall that as shown in [17], we can expect two well-defined log laws along the vertical
velocity profile, represented as two minima in the y+du+/dy+ vs y+ plot. In the present al-
gorithm and configuration, QR1 and no-model fail to yield these two log laws, while PQ1 and
PR1, barely do. Despite this, for them, we have calculated the values as if there were a log
law in the same approximate position as it appears in the other models (see Figure 7). The
remaining ones fulfill this condition, as can be seen in the same figure.
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The lack of this second log law could be due again to noise (the derivative is more sensitive
to it), low resolution, or intrinsic behavior of the models. The question remains open to future
work.

4.3 Wind turbines’ positions
As a practical application of these S3PQR models, we have selected the PR2 algorithm to ana-
lyze the power extraction for several configuration patterns of the wind farm turbines’ positions.
These patterns are ordered (4 rows 6 columns used in all the previous work, Figure 4), and six
more configurations that we call: ”alternated”, ”diagonal”, two ”curved”, and two ”disordered”
ones. The distance between rows, ∆x, has been kept the same as the original calculation. The
geometrical patterns can be seen in Figure 8.

PATTERN P/δΦ P/u∗3

ordered 0.77 3.24
alternated 0.80 3.31
diagonal 0.80 3.10
curved#1 0.76 2.87
curved#2 0.77 2.86
disordered#1 0.79 3.05
disordered#2 0.76 3.05

Table 3: PR2 model. Position energy-related quantities of a wind farm simulation. All normal-
ized by u∗ of the ordered geometry.

Figure 8: Positions’ patterns. From the top left, in order: alternated, diagonal, curved#1,
curved#2, disordered#1, disordered#2. Same interpretation as Figure 4

The results are shown in Table 3, with no striking differences between them. It is as ex-
pected, because the energy extracted by the turbines in a fully developed boundary layer comes
from vertical fluxes, minimizing the dependency on the horizontal pattern geometry.



D. Folch et al.

5. Conclusions

Without benchmark values for all these particular cases of wind farm configurations, it may be
bold to assess which model gives better results or whether S3PQR algorithms are better than
other LES models because all of them (except the no-model) are in the same range of values.
But for most of them, the general behavior matches that of reference, either on the boundary
layer or the wind farm cases.

Therefore, what we can confidently say at this moment is that at least the S3PQR type 2
algorithms are well-suited to be included in every LES test for a broad range of cases, starting
from homogeneous isotropic turbulence and channel flow to free boundary layer and wind farm
simulations.
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