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Abstract – The integration in time of the semi-discrete Navier-Stokes equations has been historically bounded
by the classic CFL condition, and later on, an innovative method has been defined by ensuring the eigenvalues
of the method lay in the boundary of the stability region, yet the effects of this in the resolution have not been
tested. In this abstract, an efficiency region in a set of schemes is defined so that the method can alternate among
methods in order to keep the maximum efficiency subject to a set of conditions, such as a minimum order of
accuracy or a minimum numerical dissipation.

1. Introduction

Solving and understanding turbulence has been one of the problems in which most efforts have
been applied within the fluid dynamics community, which is mathematically modelled by the
Navier-Stokes equations. Within the framework of the finite volume method (FVM), its space-
discretized form is the starting point for most of the methods. This form reads, using the notation
from [1], as follows,

Mus = 0c, (1) Ω
duc

dt
+C(us)uc−Duc +ΩGcpc = 0c, (2)

where M is the face-to-cell divergence operator, Ωc is a diagonal matrix containing the cell
volumes so that Ω = I3⊗Ωc, Cc is the cell-to-cell convective operator so that C = I3⊗Cc, Dc
is the cell-to-cell diffusive operator so that D = I3⊗Dc, Gc is the cell-to-cell gradient operator,
us is the velocity field defined at the faces, and I3 is the identity matrix of size 3. Traditionally,
the solution of the semi-discretized equations has been obtained with a projection method [2],
in which multiple schemes can be applied to advance the equations in time (e.g. second order
Adams-Bashforth ,AB2; second- and third- order Runge-Kutta schemes, RK2,RK3; etc.), with
their variations in their properties.

It is well-known that by performing the numerical solution of the Navier-Stokes equations,
it is possible to introduce artificial dissipation due to the discretizations used. In the work of
Verstappen and Veldman [3], and Trias et al. [1], the numerical dissipation due to the space
discretization is treated, leading to symmetry-preserving space schemes both in staggered and
collocated methods. Nonetheless, there is a reduced set of publications in which the numerical
dissipation due to the time discretization is treated. Sanderse [4] proposed the use of symplectic
(implicit) Runge-Kutta schemes in order to completely preserve energy. In order not to deal
with implicit time integration, Capuano et al. [5] proposed pseudosymplectic schemes, which
at the same time are explicit, making them more efficient. Both of these possible sources of
numerical dissipation can be put altogehter in a so-called kinetic energy budget, in which the
weight of this dissipation can be compared against the physical dissipation.

In order to properly set the time-step, Trias and Lehmkuhl [6] first proposed making use of
the stability region so that the integration procedure can be optimized, having the eigenvalues
of the method, bounded with Gershgorin’s theorem, to be in the boundaries of its stability
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region. This led to bigger time-steps while still having stable simulations when compared to the
classical CFL method.

2. Runge-Kutta schemes applied to the incompressible Navier-Stokes equa-
tions

Starting from the semi-discrete Navier-Stokes equations, Sanderse and Koren [7] proposed the
following method for the integration with Runge-Kutta (RK). Summarizing, an s-stage explicit
RK can be applied to the integration of the Navier-Stokes equations as

u∗i = un +∆t
i−1

∑
j=1

ai jF j, LΨi =
1
∆t

Du∗i , ui = u∗i −∆tGΨi, i = 1, . . . ,s (3)

u∗n+1 = un +∆t
s

∑
i=1

biFi, LΨn+1 =
1
∆t

Du∗n+1, un+1 = u∗n+1−∆tGΨi, (4)

where Fi = Ω−1(D−C(us,i))uc,i, ai j,bi correspond to the Butcher tableau of the used
method for an explicit Runge-Kutta method, u∗i corresponds to the predictor velocity, and Φ

to a pressure-like variable which corresponds to a first order approximation to the pressure.
If the coefficients from the Butcher tableau satisfy a certain conditions, a pseudosymplectic

scheme can be obtained [5] in which energy is conserved for an order higher than the order
of accuracy (e.g. a 3p5q(4) method corresponds to a third-order in accuracy, fifth in energy
conservation, by using four stages).

Note that these methods will not have either the stability region R(z),z ∈ C of a classical
RK3 or RK4, which can be easily computed by (5). Instead, their stability regions will need to
be computed with its definition (6), in which b = (b1 b2 . . . bs)

T , 1 = (1 1 . . . 1)T ∈ Rs, and
A = [ai j] ∈ Rs×s.

R(z) = 1+
s

∑
p=1

1
p!

zp, (5) R(z) = 1+ zbT (Is− zA)−11. (6)

As an example, according to Capuano et al. [5], the 3p5q(4) pseudosymplectic scheme is
parameter-dependant, the domain on which is discussed in the paper. Hence, the envelope of the
stability regions for all possible parameters will determine the stability region of the so-called
α-3p5q(4) method, and can be compared against the RK3 and RK4 schemes, as in Figure 1.

3. From stability regions to computational efficiency regions

The concept of stability regions is widely spread in the numerical solution of ODEs, being
Figure 1 a clear example of the concept, as it bounds the maximum value the eigenvalues can
take so that the integration remains stable. Usually, the time-integration scheme does not change
during the run. Nonetheless, the efficiency region is based on using a closed set of families
of schemes (e.g. RK2, RK3, RK4, α-3p5q) so that the most efficient scheme (under certain
conditions explained later on) is used at every time. This could be set by normalizing the
stability regions, which radius is directly proportional to the maximum stable time-step, by the
time required for the computation of a time-step. Hence, this time-step computation time can
be directly estimated with the generalized implementation in the in-house code framework,

T∆t(s) = (s+1)TSLAE +

[
3(s−1)

s+2
2

+6(s+1)+12s
]

Taxpy +[6(s+1)+60s]TSpMV , (7)
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Figure 1: Comparison of the stability regions for a RK3, RK4 and the parameter-dependant
α-3p5q(4).

which will work for an arbitrary number of stages s, where TSLAE corresponds to the time spent
computing the system of linear algebraic equations (SLAE), which corresponds to a Poisson
equation; Taxpy is the time spent for a linear combination of vectors, and TSpMV corresponds
to the time spent for a sparse matrix-vector product. Hence, the radius of the efficiency region

would be proportional to the maximum
∆t

T Method
∆t

. Nonetheless, in order to simplify the notation,

T Method
∆t = τMethodT Euler

∆t = τMethodT∆t(1) = τMethod(2TSLAE +24Taxpy +72TSpMV ), (8)

where τMethod is the ratio between T Method
∆t and T∆t(1), so that the efficiency region will be

proportional to
∆t

τMethod
. Note that (7) only depends on the number of stages, and not on the

coefficients, and thus τMethod will depend only in s as well. Hence, the efficiency region for a
set of standard Runge-Kutta schemes (Euler, RK2, . . . , RK5), with the stability region computed
with (5) has been obtained in Figure 2. Note that the maximum efficiency for low angles within
the complex plane is obtained with an Euler scheme, and thus, when adding the condition of
minimum second-order in time integration the efficiency for low φ is notably reduced, while
keeping the same efficiency at the most convective cases, and setting a limiting condition in the
efficiency region.

Hence, the general method will englobe a set of schemes among which it will be capable
of chosing one of the methods from the set such that the efficiency region is maximized in that
case, being subject to all of the possible constraints defined by the method.

Note that the method can be straightforwardly extended to multi-step schemes such as an
AB2 or AB3, which would have similar computation times compared to an Euler scheme, given
that there will not be any additional stages compared to the presented Runge-Kutta methods.

3.1 Kinetic energy budget
Another limiting factor for the efficiency region might be the numerical dissipation generated
by both space and time discretization. By assuming the space discretization is symmetry-
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Figure 2: Stability (left) and efficiency (right) regions for a set of standard RK schemes. The
efficiency region is computed considering that the solution of the Poisson equation corresponds
to an 80% of the iteration time for an Euler scheme.

preserving, the energy variation can be assumed to be

∆E
∆t

=
1

Re
Φ+ξ = (1+ fRK)

1
Re

Φ, (9)

where 1
ReΦ is the physical dissipation rate, and ξ = fRK

1
ReΦ is the artificial dissipation gener-

ated by the numerical scheme. Thus, a minimum in this parameter fRK > 0 will determine how
close the method is to be energy-conserving. Thus, a minimum value can be set to further limit
the efficiency region.
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