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Abstract – The integration in time of the semi-discrete Navier-Stokes equations has been historically bounded
by the classic CFL condition, and later on, an innovative method has been defined by ensuring the eigenvalues
of the method lay in the boundary of the stability region, yet the effects of this in the resolution have not been
tested. In this abstract, an efficiency region in a set of schemes is defined so that the method can alternate among
methods in order to keep the maximum efficiency subject to a set of conditions, such as a minimum order of
accuracy or a minimum numerical dissipation.

1. Introduction
Solving and understanding turbulence has been one of the problems in which most efforts have
been applied within the fluid dynamics community, which is mathematically modelled by the
Navier-Stokes equations. Within the framework of the finite volume method (FVM), its space-
discretized form is the starting point for most of the methods. This form reads, using the notation
from [1], as follows,

Mus = 0c, (1)

Ω
duc

dt
+C(us)uc−Duc +ΩGcpc = 0c, (2)

where M is the face-to-cell divergence operator, Ωc is a diagonal matrix containing the cell
volumes so that Ω = I3⊗Ωc, Cc is the cell-to-cell convective operator so that C = I3⊗Cc, Dc
is the cell-to-cell diffusive operator so that D = I3⊗Dc, Gc is the cell-to-cell gradient operator,
us is the velocity field defined at the faces, and I3 is the identity matrix of size 3. Traditionally,
the solution of the semi-discretized equations has been obtained with a projection method [2],
in which multiple schemes can be applied to advance the equations in time (e.g. second order
Adams-Bashforth ,AB2; second- and third- order Runge-Kutta schemes, RK2,RK3; etc.), with
their variations in their properties.

It is well-known that by performing the numerical solution of the Navier-Stokes equations,
it is possible to introduce artificial dissipation due to the discretizations used. In the work of
Verstappen and Veldman [3], and Trias et al. [1], the numerical dissipation due to the space
discretization is treated, leading to symmetry-preserving space schemes both in staggered and
collocated methods. Nonetheless, there is a reduced set of publications in which the numerical
dissipation due to the time discretization is treated. Sanderse [4] proposed the use of symplectic
(implicit) Runge-Kutta schemes in order to completely preserve energy. In order not to deal
with implicit time integration, Capuano et al. [5] proposed pseudosymplectic schemes, which
at the same time are explicit, making them more efficient. Both of these possible sources of
numerical dissipation can be put altogehter in a so-called kinetic energy budget, in which the
weight of this dissipation can be compared against the physical dissipation.
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In order to properly set the time-step, Trias and Lehmkuhl [6] first proposed making use of
the stability region so that the integration procedure can be optimized, having the eigenvalues
of the method, bounded with Gershgorin’s theorem, to be in the boundaries of its stability
region. This led to bigger time-steps while still having stable simulations when compared to the
classical CFL method.

2. Runge-Kutta schemes applied to the incompressible Navier-Stokes equa-
tions

Starting from the semi-discrete Navier-Stokes equations, Sanderse and Koren [7] proposed the
following method for the integration with Runge-Kutta (RK). By applying the incompressibility
condition to the momentum equation, and defining the function F(us)uc =Ω−1(Duc−C(us)uc)
and rearranging the equation, it can be found that for a domain discretized in n cells

duc

dt
= (In−GL−1M)F(us)uc, (3)

where In−GL−1M is the so-called projection operator P, which leads to

duc

dt
= PF(us)uc. (4)

In this system of ordinary differential equations, the reconstruction of the projection oper-
ator would imply a large computational time as the product of two sparse matrices is costly.
On the other hand, a projection method such as the one proposed by Chorin [2] can be applied
without the requirement of computing this projection operator, making the implementation more
efficient and simple.

Summarizing, an s-stage explicit RK can be applied to the integration of the Navier-Stokes
equations as

u∗i = un +∆t
i−1

∑
j=1

ai jF j, LΨi =
1
∆t

Du∗i , ui = u∗i −∆tGΨi, i = 1, . . . ,s (5)

u∗n+1 = un +∆t
s

∑
i=1

biFi, LΨn+1 =
1
∆t

Du∗n+1, un+1 = u∗n+1−∆tGΨi, (6)

where Fi = Ω−1(D−C(us,i))uc,i, ai j,bi correspond to the Butcher tableau of the used
method for an explicit Runge-Kutta method, u∗i corresponds to the predictor velocity, and Φ

to a pressure-like variable which corresponds to a first order approximation to the pressure.
The initial velocity field will usually be incompressible from an analytical point of view,

yet in order to have incompressible initial conditions, this field should be arranged so that
Mus,0 = 0c is fulfilled. In order to do so, the discretized initial condition will be treated as
a predictor velocity in Eq. (6), computing an initial pressure field as well as a projected (and
now incompressible) velocity field.

If the coefficients from the Butcher tableau satisfy a certain conditions, a pseudosymplectic
scheme can be obtained [5] in which energy is conserved for an order higher than the order
of accuracy (e.g. a 3p5q(4) method corresponds to a third-order in accuracy, fifth in energy
conservation, by using four stages).
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Note that these methods will not have either the stability region R(z),z ∈ C of a classical
RK3 or RK4, which can be easily computed by (7). Instead, their stability regions will need to
be computed with its definition (8), in which b = (b1 b2 . . . bs)

T , 1 = (1 1 . . . 1)T ∈ Rs, and
A = [ai j] ∈ Rs×s.

R(z) = 1+
s

∑
p=1

1
p!

zp, (7)

R(z) = 1+ zbT (Is− zA)−11. (8)

As an example, according to Capuano et al. [5], the 3p5q(4) pseudosymplectic scheme is
parameter-dependant, the domain on which is discussed in the paper. Hence, the envelope of the
stability regions for all possible parameters will determine the stability region of the so-called
α-3p5q(4) method, and can be compared against the RK3 and RK4 schemes, as in Figure 1.
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Figure 1: Comparison of the stability regions for a RK3, RK4 and the parameter-dependant
α-3p5q(4).

Once the stability region of the method is computed, the eigenbounds of the operator F(us)
need to be computed. Assuming a symmetry-preserving space discretization, the convective
operator will translate to a skew-symmetric matrix in the discrete domain, whereas the diffusive
operator will become a symmetric matrix. This means that the eigenbounds of the former, λC,
will lay in the imaginary axis within the complex plane, while the eigenbounds of the latter,
λD, will lay in the real axis. Moreover, being the discrete operator semi-negative definite, these
eigenbounds will correspond to R−. Hence, the eigenbounds of the operator F will correspond
to

λF ≤−|λD|+ iλC, (9)

and thus these λD and λC can be computed independently. In order to do so, the Gersh-
gorin circle theorem as done by Trias and Lehmkuhl [6] will be applied so that ∆ts is obtained.
Nonetheless, the actual time-step that will be used for the simulations will correspond to
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∆t = f∆t∆ts, (10)

where f∆t ≤ 1.0 will act as a Courant-like number for the self-adaptive time-step length,
since it will affect in other parameters of the simulation such as its energy budgets, for instance.

3. From stability regions to computational efficiency regions

The concept of stability regions is widely spread in the numerical solution of ODEs, being
Figure 1 a clear example of the concept, as it bounds the maximum value the eigenvalues can
take so that the integration remains stable. Usually, the time-integration scheme does not change
during the run. Nonetheless, the efficiency region is based on using a closed set of families
of schemes (e.g. RK2, RK3, RK4, α-3p5q) so that the most efficient scheme (under certain
conditions explained later on) is used at every time. This could be set by normalizing the
stability regions, which radius is directly proportional to the maximum stable time-step, by the
time required for the computation of a time-step. Hence, this time-step computation time can
be directly estimated with the generalized implementation in the in-house code framework,

T∆t(s) = sTSLAE +33sTSpMV + s
(

24+3
s−1

2

)
Taxpy +10sTaxty, (11)

which will work for an arbitrary number of stages s, where TSLAE corresponds to the time spent
computing the system of linear algebraic equations (SLAE), which corresponds to a Poisson
equation; Taxpy is the time spent for a linear combination of vectors, and TSpMV corresponds
to the time spent for a sparse matrix-vector product. Hence, the radius of the efficiency region

would be proportional to the maximum
∆t

T Method
∆t

. Nonetheless, in order to simplify the notation,

T Method
∆t = τMethodT Euler

∆t = τMethodT∆t(1)= τMethod(TSLAE +27Taxpy+33TSpMV +10Taxty), (12)

where τMethod is the ratio between T Method
∆t and T∆t(1), so that the efficiency region will be

proportional to
∆t

τMethod
. Note that (11) only depends on the number of stages, and not on the

coefficients, and thus τMethod will depend only in s as well. Hence, the efficiency region for a set
of standard Runge-Kutta schemes (Euler, RK2, RK3, RK4), with the stability region computed
with (7) has been obtained in Figure 2. Note that the maximum efficiency for low angles within
the complex plane is obtained with an Euler scheme, and thus, when adding the condition of
minimum second-order in time integration the efficiency for low φ is notably reduced, while
keeping the same efficiency at the most convective cases, and setting a limiting condition in the
efficiency region.

Hence, the general method will englobe a set of schemes among which it will be capable
of chosing one of the methods from the set such that the efficiency region is maximized in that
case, being subject to all of the possible constraints defined by the method.

Note that the method can be straightforwardly extended to multi-step schemes such as an
AB2 or AB3, which would have similar computation times compared to an Euler scheme, given
that there will not be any additional stages compared to the presented Runge-Kutta methods.

The presented method will slightly modify the computation of the time-step compared to
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Figure 2: Stability (left) and efficiency (right) regions for a set of standard RK schemes. The
efficiency region is computed considering that the solution of the Poisson equation corresponds
to an 80% of the iteration time for an Euler scheme.

the classical computation of a self-adaptive scheme. In order to do so, a pool of Runge-Kutta
schemes will be selected so that they are candidates to integrate the following time step.

Algorithm 1: Self-adaptive efficiency time-step scheme
Data: Pool of schemes, {Scheme1,Scheme2,. . . ,Schemen},Eigenbounds {λC,λD},

Scale factor, f∆t
Result: Time-step, ∆t

1 i := 1;
2 is := i; ∆ts := 0.0;
3 while i≤ n do
4 ∆ts,i = ∆ts(Schemei,λC,λD);
5 if ∆ts,i/τSchemei ≥ ∆ts then
6 ∆ts = ∆ts,i/τSchemei;
7 is := i;

8 return ∆t := f∆t∆ts(Schemeis,λC,λD);

At the beginning of every time-step, as per Alg. 1 the scheme will calculate the eigen-
bounds, λC and λD, as usual. Afterwards, the stability time-step length for all of them will
be computed and scaled with the τMethod and the largest scaled value will be selected so that
its corresponding scheme will be the selected candidate to integrate that time-step, named is,
and thus the time-step will be set by applying the classical Gershgorin with the stability region
obtained for the is-th scheme.

4. Numerical experiments

The numerical experiments carried out to validate the method will correspond to a three-dimensional
Taylor-Green vortex (TGV) problem. In this case, the velocity field used to initialize the field



Turbulence, Heat and Mass Transfer 10

corresponds to

ux,0 =U0
2√
3

sin(x)cos(y)cos(z) (13a)

uy,0 =U0
2√
3

cos(x)sin(y)cos(z) (13b)

uz,0 =U=
2√
3

cos(x)cos(y)sin(z) (13c)

in a cubic domain with side 2π and will be run until t = 202π

U0
, following the test cases from

Capuano, Coppola and Luca [8]. This test will be run for the schemes listed in Tab. 1, with
their properties, as well as for an efficient set up with a pool of schemes corresponding to all of
the schemes tested individually.

Table 1: List of the Runge-Kutta schemes used.

Method Num. stages, s Ord. accuracy, p

Euler 1 1
Heun RK2 2 2
Heun RK3 3 3

Standard RK4 4 4
4p7q(6) [8] 6 4

The case was tested for a Re = 3000 and for f∆t = 0.1. First of all, in the run with the
efficient set up, only the methods with s ≤ 4 were actually used, so the 4p7q(6) scheme was
not used at any time in the simulation (Fig. 3), even though it provides the largest possible
time-step.
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Figure 3: Evolution of the time-step as well as the schemes used in the numerical solution of a
Re = 3000 TGV with f∆t = 0.1.
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This can be easily explained by the fact that even though it has 6 stages, and 4th order in
accuracy, which leads to a bigger stability region than its 4th order in accuracy counterpart stan-
dard RK4, it is not big enough for a τ4p7q(6) ≈ 6.0 and thus is not used in the whole simulation.

Moreover, the shift towards a more diffusive problem in the whole duration of the simula-
tion, since the problem is left to decay for the whole run, will lead to the use of schemes with
a lower number of stages (and lower accuracy) since φ will lower with the evolution of time,
which is observed in Fig. 3. Nonetheless, note that no limitations on the accuracy of the scheme
were imposed and thus, as seen in Fig. 2, for most of the low φ range, the most efficient scheme
will be the Euler, and thus it will be the most used as shown in Fig. 3.

With regards to the wall clock time savings due to the implementation of this method com-
pared to the classical methods computed using with exactly the same conditions f∆t = 0.1 and
Re= 3000, with 4 CPU cores, it takes 498.70 s, which implies an improvement of a 47% against
a whole simulation with an Euler scheme (951.78 s), a 53% against a Heun RK2 (1078.85 s), a
63% for a Standard RK4 (1369.17 s), a 64% for the 4p7q(6) scheme from [8] (1412.42 s), and
a 77% when compared to a Heun RK3 (2167.96 s).

Note that this improvement is just considering the performance in wall clock of every sim-
ulation, and not the outcome in regards of accuracy or energy dissipation due to the integrating
scheme, so that it is a comparison based on pure performance in advancing in time.

5. Conclusions
Historically bounded by the CFL condition, stability of the integration of the Navier-Stokes
equations had not been revised until Trias and Lehmkuhl [6] proposed a method to determine
a time-step such that it lays in the boundary of the stability region. In this paper, this idea
has been extended to a set of Runge-Kutta schemes such that, based on the ratio between the
biggest stable time-step and the wall clock per iteration of the scheme, as well as other additional
constraints that could be defined at a pre-run stage, the most efficient scheme is used at every
time, leading to a novel self-adaptive scheme.

This scheme has been tested against all the schemes that were considered when creating
the pool of schemes and successful results with regards to wall clock performance have been
obtained compared to the other used schemes (Tab. 1), which yields a possibility to further
exploit this method so that, performancewise, better results can be obtained with a more refined
programming of the method trying to reduce the computational time of the computation of
this ∆t. Nonetheless, it should be considered that the method would work the best when the
wall clock of the computation of the time-step is negligible compared to the wall clock of the
iteration computation, as the effect of having a slower ∆t computation is reduced, and thus good
performance should be expected for dense meshes. Nonetheless, the method has still not been
tested in wall-bounded flows and thus some uncertainties with regards to the performance of
the method in this kind of simulations appear.

Acknowledgements
The investigations presented in this paper are supported by the Ministerio de Economı́a y Com-
petitividad, Spain, RETOtwin project (PDC2021-120970-I00). J.P-R. is also supported by the
Catalan Agency for Management of University and Research Grants (AGAUR). The authors
thankfully acknowledge these institutions.



Turbulence, Heat and Mass Transfer 10

References
[1] F. X. Trias, O. Lehmkuhl, A. Oliva, C. D. Pérez-Segarra, and R. W. Verstappen, “Symmetry-
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