Cost-vs-accuracy analysis of self-adaptive time-integration methods

J. Plana-Riu, F.X. Trias, C.D. Pérez-Segarra, A. Oliva

Heat and Mass Transfer Technological Centre Technical University of Catalonia

10th International Symposium on Turbulence, Heat and Mass Transfer

September 11th-15th, 2023 Rome, Italy

1 Introduction

- 2 Runge-Kutta applied to Navier-Stokes
- Self-adaptive time integration
- 4 Numerical experiments

5 Conclusion

Introduction	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Numerical experiments	Conclusion
•				
Introduction				

\mathbf{CFL}^1

First used method to ensure the stability of an explicit integration

$$egin{array}{l} rac{du}{dt}+urac{du}{dx}=0 \ & igcup \ & igc$$

¹Courant, R, Friedrichs, K, and Lewy, H. (1927), "Über die partiellen Differenzengleichungen der matematischen Physik". Mathematische Annalen 100 (1), pp. 32-74

²Trias, F.X, Lehmkuhl, O. (2011), "A self-adaptive strategy for the time integration of Navier-Stokes equations". Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

Introduction	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Numerical experiments	Conclusion
•		00000	000	000
Introducti	on			

\mathbf{CFL}^1

First used method to ensure the stability of an explicit integration

 $rac{du}{dt} + u rac{du}{dx} = 0$ $igcup_{ax}$ $igcup_{ax}$ $igcup_{ax}$ $igcup_{ax}$ $igcup_{ax}$ $igcup_{ax}$ $igcup_{ax}$ $igcup_{ax}$

 \mathbf{SAT}^2

Computation of the eigenbounds in the predictor velocity step to set the maximum stable Δt

¹Courant, R, Friedrichs, K, and Lewy, H. (1927), "Über die partiellen Differenzengleichungen der matematischen Physik". Mathematische Annalen 100 (1), pp. 32-74

²Trias, F.X, Lehmkuhl, O. (2011), "A self-adaptive strategy for the time integration of Navier-Stokes equations". Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

¹Courant, R, Friedrichs, K, and Lewy, H. (1927), "Über die partiellen Differenzengleichungen der matematischen Physik". Mathematische Annalen 100 (1), pp. 32-74

²Trias, F.X, Lehmkuhl, O. (2011), "A self-adaptive strategy for the time integration of Navier-Stokes equations". Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

Introduction	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Numerical experiments	Conclusion
0	•	00000	000	000
	Z TELEVISION NE T	CL I		

Runge-Kutta applied to Navier-Stokes

Starting point...

$$Mu_s = 0_c$$

$$2\frac{du_c}{dt} + C(u_s)u_c - Du_c + \Omega G_c p_c = 0_c$$

According to Sanderse and Koren ³,

$$\frac{du_c}{dt} = \underbrace{(I_n - GL^{-1}M)}_{\text{Projection operator},P} F(u_s)u_c$$

$$u_i^* = u_n + \Delta t \sum_{j=1}^{i-1} a_{ij} F_j \qquad u_{n+1}^* = u_n + \Delta t \sum_{i=1}^s b_i F_i$$
$$L\Psi_i = \frac{1}{\Delta t} Du_i^* \qquad L\Psi_{n+1} = \frac{1}{\Delta t} Du_{n+1}^*$$
$$u_i = u_i^* - \Delta t G\Psi_i \qquad u_{n+1} = u_{n+1}^* - \Delta t G\Psi_{n+1}$$

³Sanderse, B., Koren, B. (2012), "Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations", Journal of Computational Physics 231 (8), pp. 3041-3063

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration		Conclusion
0	0	00000	000	000
Stability	region of Runge-Kutta			

- Coefficients a_{ij} , b_i from the method: Butcher tableau, $A = [a_{ij}]_{i=1,...,s;j=1,...,s}$, $b = (b_1 \ b_2 \ \dots \ b_s)$
- In general, $R(z) = 1 + zb^{T}(I_{s} zA)^{-1}1_{s}$, yet for p = s, $R(z) = 1 + \sum_{p=1}^{s} \frac{1}{p!}z^{p}$

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Numerical experiments	Conclusion
		0000		
Computatic	on of eigenbounds			

- Need to compute the eigenbounds of $F(u_s) = D C(u_s)$
- If *D* and *C*(u_s) are discretized with a symmetry-preserving scheme²,

 $\lambda_F \leq -|\lambda_D| + i\lambda_C$

²Trias, F.X, Lehmkuhl, O. (2011), "A self-adaptive strategy for the time integration of Navier-Stokes equations". Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

· ·			000	000
	O	0000	000	000
Introduction	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Numerical experiments	Conclusion

- Need to compute the eigenbounds of $F(u_s) = D C(u_s)$
- If *D* and *C*(u_s) are discretized with a symmetry-preserving scheme²,

 $\lambda_{F} \leq -|\lambda_{D}| + i\lambda_{C}$

²Trias, F.X, Lehmkuhl, O. (2011), "A self-adaptive strategy for the time integration of Navier-Stokes equations". Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

· ·			000	000
	O	0000	000	000
Introduction	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Numerical experiments	Conclusion

- Need to compute the eigenbounds of $F(u_s) = D C(u_s)$
- If *D* and *C*(u_s) are discretized with a symmetry-preserving scheme²,

 $\lambda_{F} \leq -|\lambda_{D}| + i\lambda_{C}$

²Trias, F.X, Lehmkuhl, O. (2011), "A self-adaptive strategy for the time integration of Navier-Stokes equations". Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

0	0	00000	000	000		
Computation	Computation of eigenbounds					

- Need to compute the eigenbounds of $F(u_s) = D C(u_s)$
- If *D* and *C*(u_s) are discretized with a symmetry-preserving scheme²,

 $\lambda_{F} \leq -|\lambda_{D}| + i\lambda_{C}$

²Trias, F.X, Lehmkuhl, O. (2011), "A self-adaptive strategy for the time integration of Navier-Stokes equations". Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

0	0	00000	000	000		
Computation	Computation of eigenbounds					

- Need to compute the eigenbounds of $F(u_s) = D C(u_s)$
- If *D* and *C*(u_s) are discretized with a symmetry-preserving scheme²,

 $\lambda_{F} \leq -|\lambda_{D}| + i\lambda_{C}$

²Trias, F.X, Lehmkuhl, O. (2011), "A self-adaptive strategy for the time integration of Navier-Stokes equations". Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

0	0	00000	000	000		
Computation	Computation of eigenbounds					

- Need to compute the eigenbounds of $F(u_s) = D C(u_s)$
- If *D* and *C*(u_s) are discretized with a symmetry-preserving scheme²,

 $\lambda_{F} \leq -|\lambda_{D}| + i\lambda_{C}$

 $^{^2}$ Trias, F.X, Lehmkuhl, O. (2011), "A self-adaptive strategy for the time integration of Navier-Stokes equations". Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Numerical experiments	Conclusion
		00000	000	000
From stabili	ty to officionay	regions		

Not always. It provides the most efficient integration given a integration scheme.

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Numerical experiments	Conclusion
		00000	000	000
From stabili	ty to efficiency regior	าร		

Not always. It provides the most efficient integration given a integration scheme. What if... instead of using a single scheme, a **pool** of schemes is used?

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Numerical experiments	Conclusion
		00000	000	000
E .	1 111 CC 1			
From sta	ability to efficiency regi	ons		

Not always. It provides the most efficient integration given a integration scheme. What if... instead of using a single scheme, a **pool** of schemes is used?

Computational efficiency region

Combination of a set of stability regions normalized by the ratio of wall clock times per iteration between the current scheme and Euler scheme, $\tau_{\rm Method}.$

With the generalized implementation in our in-house CFD&HT code...

$$T_{\Delta t}(s) = sT_{SLAE} + 33sT_{SPMV} + s\left(24 + 3\frac{s-1}{2}\right)T_{axpy} + 10sT_{axty}$$

0	0	00000	000	000
From stabili	ty to efficiency region	IS		

Not always. It provides the most efficient integration given a integration scheme. What if... instead of using a single scheme, a **pool** of schemes is used?

Computational efficiency region

Combination of a set of stability regions normalized by the ratio of wall clock times per iteration between the current scheme and Euler scheme, $\tau_{\rm Method}$.

With the generalized implementation in our in-house CFD&HT code...

$$T_{\Delta t}(s) = sT_{SLAE} + 33sT_{SpMV} + s\left(24 + 3\frac{s-1}{2}\right)T_{axpy} + 10sT_{axty}$$

$$au_{\mathsf{Method}}(s) = rac{T_{\Delta t}(s)}{T_{\Delta t}(1)} = s \left(1 + rac{3}{2}(s-1)rac{T_{\mathsf{axpy}}}{T_{\Delta t}(1)}
ight) pprox s$$

		0	0000	000	000
Runge-Kutta applied to Navier-Stokes		Se	If-adaptive time integration	Numerical experiments	Conclusion

From stability to efficiency regions

Introduction	Runge-Kut	ta applied to Navier-Stokes	Self-adaptive time integration	Numerical experiments	Conclusion
0	0		00000	000	000

From stability to efficiency regions

Introduction	Runge-Ku	tta applied to Navier-Stokes	Self-adaptive time integration	Numerical experiments	Conclusion
0	0		00000	000	000

From stability to efficiency regions

Additional conditions

Other possible conditions can be set to limit or handicap the proposed schemes in order to filter according to different categories.

	n Runge-Kutta applied to Navier-Stokes O	Self-adaptive time integration ○○○○●	Numerical experiments 000	Conclusion 000
Fror	n stability to efficiency reg	ions		
Ā	Igorithm 1: Self-adaptive efficiency	time-step scheme		
Ē	Data: Pool of schemes, (Scheme 1,Se	cheme 2,,Scheme n),Eige	enbounds $(\lambda_{C}, \lambda_{D})$, Sca	le
	factor $f_{\Delta t}$			
F	Result: Time-step, Δt			
1 i	:= 1;			
2 is	i := i;			
3 Z	$\Delta t_s := 0.0;$			
4 V	while $i \leq n$ do			
5	$\Delta t_{s,i} = \Delta t_s(Scheme_i, \lambda_C, \lambda_D);$			
6	if $\Delta t_{s,i}/ au_{\mathit{Scheme}_i} \geq \Delta t_s$ then			
7	$\Delta t_{s} = \Delta t_{s,i} / au_{Scheme_{i}}$;			
8	$i_s := i;$			
9	end			
10 e	nd			

11 return $\Delta t := f_{\Delta t} \Delta t_s(Scheme_{i_s}, \lambda_C, \lambda_D);$

Introduction	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Numerical experiments	Conclusion
		00000	000	000
Numerical	experiments			

Three-dimensional Taylor-Green vortex

Initial conditions:

$$u_{x,0} = U_0 \frac{2}{\sqrt{3}} \sin(x) \cos(y) \cos(z)$$
$$u_{y,0} = U_0 \frac{2}{\sqrt{3}} \cos(x) \sin(y) \cos(z)$$
$$u_{z,0} = U_0 \frac{2}{\sqrt{3}} \cos(x) \cos(y) \sin(z)$$

- Run until $t = 20 \frac{2\pi}{U_0}^4$
- $f_{\Delta t} = [0.15, 0.5]$, Re = 1500
- $(32,64)^3$ grid, cube with a side length of 2π

Method	Num. stag. <i>s</i>	Ord. acc. p
Euler	1	1
Heun RK2	2	2
Heun RK3	3	3
Standard RK4	4	4

⁴Capuano, F., Coppola, G., and de Luca, L. (2015), "An efficient time advancing strategy for energy-preserving simulations". Journal of Computational Physics 295, pp. 209-229

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Numerical experiments	Conclusion
			000	
Numerical e	xperiments			

- Scheme

3.0

2.5

1.5

11.0 18

16

12

14

¢ 2.0

----- Δt

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Numerical experiments	Conclusion
		00000	000	000
Numerical e	xperiments			

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration		Conclusion
		00000	000	000
Conclusion Method				

- Method is born as an evolution of self-adaptive strategies:
 - Pool of schemes chosen previous to the start of the simulation
 - Computational efficiency region allows addition of constraints or handicaps to methods to set other characteristics to just performance
 - Computation of eigenbounds might be swapped for a more efficient method

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration		Conclusion
		00000	000	000
Conclusion Numerical tests				

- Numerical tests have provided improved performance vs the schemes presented on the pool.
- Starts simulation with higher order methods (RK4, RK3) to move to lower order with the evolution of the simulation (Euler).
- Could be tested with higher Re to check if the high order methods are more relevant in the solution.
- Method performance improves when cost per iteration is reduced, or for bigger $f_{\Delta t}$

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration	Numerical experiments	Conclusion
				000
Conclusion				

Can other properties from Runge-Kutta integration be exploited?

Future perspectives

- Computation of Ψ only at the end of the stage, according to Le and Moin⁵:
 - Reduction of accuracy to second order
 - Stability region of the method is preserved

 $au_{\mathsf{Method}^*} = 1 + (s-1)(1 - \mathit{f_{SLAE}})$

⁵Le, H. and Moin, P. (1991), "An improvement of fractional step methods for the incompressible Navier-Stokes equations". Journal of Computational Physics 92, pp. 369-379

	Runge-Kutta applied to Navier-Stokes	Self-adaptive time integration		Conclusion
		00000	000	000
Conclusion				

CONCLUSION Future perspectives

Can other properties from Runge-Kutta integration be exploited?

- Computation of Ψ only at the end of the stage, according to Le and Moin⁵:
 - Reduction of accuracy to second order
 - Stability region of the method is preserved

$$au_{\mathsf{Method}^*} = 1 + (s-1)(1 - \mathit{f_{SLAE}})$$

⁵Le, H. and Moin, P. (1991), "An improvement of fractional step methods for the incompressible Navier-Stokes equations". Journal of Computational Physics 92, pp. 369-379