
Cost-vs-accuracy analysis of self-adaptive time-integration
methods

J. Plana-Riu, F.X. Trias, C.D. Pérez-Segarra, A. Oliva

Heat and Mass Transfer Technological Centre
Technical University of Catalonia

10th International Symposium on Turbulence, Heat and Mass Transfer

September 11th-15th, 2023
Rome, Italy

Contents

1 Introduction

2 Runge-Kutta applied to Navier-Stokes

3 Self-adaptive time integration

4 Numerical experiments

5 Conclusion

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Introduction

CFL1

First used method to
ensure the stability of an

explicit integration

du
dt + u du

dx = 0

(
u∆t
∆x

)
max
≤ 1

SAT2

Computation of the
eigenbounds in the

predictor velocity step
to set the maximum stable ∆t

<

=

ϕ

And now?

1Courant, R, Friedrichs, K, and Lewy, H. (1927), ”Über die partiellen Differenzengleichungen der
matematischen Physik”. Mathematische Annalen 100 (1), pp. 32-74

2Trias, F.X, Lehmkuhl, O. (2011), ”A self-adaptive strategy for the time integration of Navier-Stokes
equations”. Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134 3 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Introduction

CFL1

First used method to
ensure the stability of an

explicit integration

du
dt + u du

dx = 0

(
u∆t
∆x

)
max
≤ 1

SAT2

Computation of the
eigenbounds in the

predictor velocity step
to set the maximum stable ∆t

<

=

ϕ

And now?

1Courant, R, Friedrichs, K, and Lewy, H. (1927), ”Über die partiellen Differenzengleichungen der
matematischen Physik”. Mathematische Annalen 100 (1), pp. 32-74

2Trias, F.X, Lehmkuhl, O. (2011), ”A self-adaptive strategy for the time integration of Navier-Stokes
equations”. Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134 3 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Introduction

CFL1

First used method to
ensure the stability of an

explicit integration

du
dt + u du

dx = 0

(
u∆t
∆x

)
max
≤ 1

SAT2

Computation of the
eigenbounds in the

predictor velocity step
to set the maximum stable ∆t

<

=

ϕ

And now?

1Courant, R, Friedrichs, K, and Lewy, H. (1927), ”Über die partiellen Differenzengleichungen der
matematischen Physik”. Mathematische Annalen 100 (1), pp. 32-74

2Trias, F.X, Lehmkuhl, O. (2011), ”A self-adaptive strategy for the time integration of Navier-Stokes
equations”. Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134 3 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Runge-Kutta applied to Navier-Stokes

Starting point...

Mus = 0c

Ω
duc

dt
+ C (us)uc − Duc + ΩGcpc = 0c

Putting together both expressions...

duc

dt
= (In − GL−1M)︸ ︷︷ ︸

Projection operator,P

F (us)uc

Hard to compute PF (us), thus projection
method is used.

According to Sanderse and Koren 3,

u∗
i = un + ∆t

i−1∑
j=1

aijFj u∗
n+1 = un + ∆t

s∑
i=1

biFi

LΨi =
1

∆t
Du∗

i LΨn+1 =
1

∆t
Du∗

n+1

ui = u∗
i −∆tGΨi un+1 = u∗

n+1 −∆tGΨn+1

3Sanderse, B., Koren, B. (2012), ”Accuracy analysis of explicit Runge-Kutta methods applied to the
incompressible Navier-Stokes equations”, Journal of Computational Physics 231 (8), pp. 3041-3063

4 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Stability region of Runge-Kutta

Coefficients aij , bi from the method:
Butcher tableau, A = [aij]i=1,...,s;j=1,...,s ,
b = (b1 b2 . . . bs)

In general, R(z) = 1 + zbT (Is − zA)−11s ,
yet for p = s, R(z) = 1 +

∑s
p=1

1
p!z

p

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5
<

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

=

Euler

RK2

RK3

RK4

5 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Computation of eigenbounds

Need to compute the eigenbounds of
F (us) = D − C (us)

If D and C (us) are discretized with a
symmetry-preserving scheme2,

λF ≤ −|λD |+ iλC

λD and λC can be computed
independently with Gershgorin circle
theorem

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5
<

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

=

Euler

RK2

RK3

RK4

λF

λC

λD

2Trias, F.X, Lehmkuhl, O. (2011), ”A self-adaptive strategy for the time integration of Navier-Stokes
equations”. Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

6 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Computation of eigenbounds

Need to compute the eigenbounds of
F (us) = D − C (us)

If D and C (us) are discretized with a
symmetry-preserving scheme2,

λF ≤ −|λD |+ iλC

λD and λC can be computed
independently with Gershgorin circle
theorem

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5
<

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

=

Euler

RK2

RK3

RK4

λF

λC

λD

2Trias, F.X, Lehmkuhl, O. (2011), ”A self-adaptive strategy for the time integration of Navier-Stokes
equations”. Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

6 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Computation of eigenbounds

Need to compute the eigenbounds of
F (us) = D − C (us)

If D and C (us) are discretized with a
symmetry-preserving scheme2,

λF ≤ −|λD |+ iλC

λD and λC can be computed
independently with Gershgorin circle
theorem

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5
<

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

=

Euler

RK2

RK3

RK4

λF

λC

λD

λF∆tEuler

2Trias, F.X, Lehmkuhl, O. (2011), ”A self-adaptive strategy for the time integration of Navier-Stokes
equations”. Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

6 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Computation of eigenbounds

Need to compute the eigenbounds of
F (us) = D − C (us)

If D and C (us) are discretized with a
symmetry-preserving scheme2,

λF ≤ −|λD |+ iλC

λD and λC can be computed
independently with Gershgorin circle
theorem

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5
<

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

=

Euler

RK2

RK3

RK4

λF

λC

λD

λF∆tEuler

λF∆tRK2

2Trias, F.X, Lehmkuhl, O. (2011), ”A self-adaptive strategy for the time integration of Navier-Stokes
equations”. Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

6 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Computation of eigenbounds

Need to compute the eigenbounds of
F (us) = D − C (us)

If D and C (us) are discretized with a
symmetry-preserving scheme2,

λF ≤ −|λD |+ iλC

λD and λC can be computed
independently with Gershgorin circle
theorem

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5
<

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

=

Euler

RK2

RK3

RK4

λF

λC

λD

λF∆tEuler

λF∆tRK2

λF∆tRK3

2Trias, F.X, Lehmkuhl, O. (2011), ”A self-adaptive strategy for the time integration of Navier-Stokes
equations”. Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

6 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Computation of eigenbounds

Need to compute the eigenbounds of
F (us) = D − C (us)

If D and C (us) are discretized with a
symmetry-preserving scheme2,

λF ≤ −|λD |+ iλC

λD and λC can be computed
independently with Gershgorin circle
theorem

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5
<

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

=

Euler

RK2

RK3

RK4

λF

λC

λD

λF∆tEuler

λF∆tRK2

λF∆tRK3

λF∆tRK4

2Trias, F.X, Lehmkuhl, O. (2011), ”A self-adaptive strategy for the time integration of Navier-Stokes
equations”. Numerical Heat Transfer, Part B: Fundamentals 60 (2), pp. 116-134

6 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

From stability to efficiency regions

Do stability-region bounded ∆t offer the most efficient integration?

Not always. It provides the most efficient integration given a integration scheme.

What if... instead of using a single scheme, a pool of schemes is used?

Computational efficiency region

Combination of a set of stability regions normalized by the ratio of wall clock times per
iteration between the current scheme and Euler scheme, τMethod.

With the generalized implementation in our in-house CFD&HT code...

T∆t(s) = sTSLAE + 33sTSpMV + s

(
24 + 3

s − 1

2

)
Taxpy + 10sTaxty

τMethod(s) =
T∆t(s)

T∆t(1)
= s

(
1 +

3

2
(s − 1)

Taxpy

T∆t(1)

)
≈ s

7 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

From stability to efficiency regions

Do stability-region bounded ∆t offer the most efficient integration?

Not always. It provides the most efficient integration given a integration scheme.
What if... instead of using a single scheme, a pool of schemes is used?

Computational efficiency region

Combination of a set of stability regions normalized by the ratio of wall clock times per
iteration between the current scheme and Euler scheme, τMethod.

With the generalized implementation in our in-house CFD&HT code...

T∆t(s) = sTSLAE + 33sTSpMV + s

(
24 + 3

s − 1

2

)
Taxpy + 10sTaxty

τMethod(s) =
T∆t(s)

T∆t(1)
= s

(
1 +

3

2
(s − 1)

Taxpy

T∆t(1)

)
≈ s

7 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

From stability to efficiency regions

Do stability-region bounded ∆t offer the most efficient integration?

Not always. It provides the most efficient integration given a integration scheme.
What if... instead of using a single scheme, a pool of schemes is used?

Computational efficiency region

Combination of a set of stability regions normalized by the ratio of wall clock times per
iteration between the current scheme and Euler scheme, τMethod.

With the generalized implementation in our in-house CFD&HT code...

T∆t(s) = sTSLAE + 33sTSpMV + s

(
24 + 3

s − 1

2

)
Taxpy + 10sTaxty

τMethod(s) =
T∆t(s)

T∆t(1)
= s

(
1 +

3

2
(s − 1)

Taxpy

T∆t(1)

)
≈ s

7 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

From stability to efficiency regions

Do stability-region bounded ∆t offer the most efficient integration?

Not always. It provides the most efficient integration given a integration scheme.
What if... instead of using a single scheme, a pool of schemes is used?

Computational efficiency region

Combination of a set of stability regions normalized by the ratio of wall clock times per
iteration between the current scheme and Euler scheme, τMethod.

With the generalized implementation in our in-house CFD&HT code...

T∆t(s) = sTSLAE + 33sTSpMV + s

(
24 + 3

s − 1

2

)
Taxpy + 10sTaxty

τMethod(s) =
T∆t(s)

T∆t(1)
= s

(
1 +

3

2
(s − 1)

Taxpy

T∆t(1)

)
≈ s

7 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

From stability to efficiency regions

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5
<

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
=

Euler

RK2

RK3

RK4

−2.0 −1.5 −1.0 −0.5 0.0
<

0.0

0.2

0.4

0.6

0.8

1.0

=

Euler

normalized RK2

normalized RK3

normalized RK4

min O(∆t)

min O(∆t2)

Additional conditions

Other possible conditions can be set to limit or handicap the proposed schemes in order to
filter according to different categories.

8 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

From stability to efficiency regions

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5
<

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
=

Euler

RK2

RK3

RK4

−2.0 −1.5 −1.0 −0.5 0.0
<

0.0

0.2

0.4

0.6

0.8

1.0

=

Euler

normalized RK2

normalized RK3

normalized RK4

min O(∆t)

min O(∆t2)

Additional conditions

Other possible conditions can be set to limit or handicap the proposed schemes in order to
filter according to different categories.

8 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

From stability to efficiency regions

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5
<

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
=

Euler

RK2

RK3

RK4

−2.0 −1.5 −1.0 −0.5 0.0
<

0.0

0.2

0.4

0.6

0.8

1.0

=

Euler

normalized RK2

normalized RK3

normalized RK4

min O(∆t)

min O(∆t2)

Additional conditions

Other possible conditions can be set to limit or handicap the proposed schemes in order to
filter according to different categories.

8 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

From stability to efficiency regions

Algorithm 1: Self-adaptive efficiency time-step scheme

Data: Pool of schemes, (Scheme 1,Scheme 2,. . . ,Scheme n),Eigenbounds (λC , λD), Scale
factor f∆t

Result: Time-step, ∆t
1 i := 1;
2 is := i ;
3 ∆ts := 0.0;
4 while i ≤ n do
5 ∆ts,i = ∆ts(Schemei , λC , λD);
6 if ∆ts,i/τSchemei ≥ ∆ts then
7 ∆ts = ∆ts,i/τSchemei ;
8 is := i ;

9 end

10 end
11 return ∆t := f∆t∆ts(Schemeis , λC , λD);

9 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Numerical experiments

Three-dimensional Taylor-Green vortex

Initial conditions:

ux,0 = U0
2√
3

sin(x) cos(y) cos(z)

uy ,0 = U0
2√
3

cos(x) sin(y) cos(z)

uz,0 = U0
2√
3

cos(x) cos(y) sin(z)

Run until t = 20 2π
U0

4

f∆t = [0.15, 0.5], Re = 1500

(32, 64)3 grid, cube with a side length of
2π

Method Num. stag. s Ord. acc. p

Euler 1 1
Heun RK2 2 2
Heun RK3 3 3

Standard RK4 4 4

4Capuano, F., Coppola, G., and de Luca, L. (2015), ”An efficient time advancing strategy for
energy-preserving simulations”. Journal of Computational Physics 295, pp. 209-229

10 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Numerical experiments
323 grid

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
f∆t

6

8

10

12

14

16

18

20

W
al

l
cl

oc
k

ti
m

e

efficiency

RK2

RK3

RK4

2 4 6 8 10 12 14 16 18
t̃

paramEuler

heunRK2

heunRK3

stdRK4

S
ch

em
e

1.0

1.5

2.0

2.5

3.0

∆
t

Scheme

∆t

11 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Numerical experiments
643 grid

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
f∆t

150

200

250

300

350

400

W
al

l
cl

oc
k

ti
m

e

efficiency

RK2

RK3

RK4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t̃

paramEuler

heunRK2

heunRK3

stdRK4

S
ch

em
e

0.4

0.5

0.6

0.7

0.8

∆
t

Scheme

∆t

12 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Conclusion
Method

Method is born as an evolution of self-adaptive strategies:

Pool of schemes chosen previous to the start of the simulation
Computational efficiency region allows addition of constraints or handicaps to methods to
set other characteristics to just performance
Computation of eigenbounds might be swapped for a more efficient method

13 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Conclusion
Numerical tests

Numerical tests have provided improved performance vs the schemes presented on the
pool.

Starts simulation with higher order methods (RK4, RK3) to move to lower order with the
evolution of the simulation (Euler).

Could be tested with higher Re to check if the high order methods are more relevant in
the solution.

Method performance improves when cost per iteration is reduced, or for bigger f∆t

14 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Conclusion
Future perspectives

Can other properties from
Runge-Kutta integration be
exploited?

Computation of Ψ only at the
end of the stage, according to Le
and Moin5:

Reduction of accuracy to
second order
Stability region of the method
is preserved

τMethod∗ = 1 + (s − 1)(1− fSLAE)

−2.0 −1.5 −1.0 −0.5 0.0
<

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

=

Euler

normalized RK2

normalized RK3

normalized RK4

min O(∆t)

min O(∆t2)

normalized RK2∗, fSLAE = 0.85

normalized RK3∗, fSLAE = 0.85

normalized RK4∗, fSLAE = 0.85

5Le, H. and Moin, P. (1991), ”An improvement of fractional step methods for the incompressible
Navier-Stokes equations”. Journal of Computational Physics 92, pp. 369-379

15 / 15

Introduction Runge-Kutta applied to Navier-Stokes Self-adaptive time integration Numerical experiments Conclusion

Conclusion
Future perspectives

Can other properties from
Runge-Kutta integration be
exploited?

Computation of Ψ only at the
end of the stage, according to Le
and Moin5:

Reduction of accuracy to
second order
Stability region of the method
is preserved

τMethod∗ = 1 + (s − 1)(1− fSLAE) −2.0 −1.5 −1.0 −0.5 0.0
<

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

=

Euler

normalized RK2

normalized RK3

normalized RK4

min O(∆t)

min O(∆t2)

normalized RK2∗, fSLAE = 0.85

normalized RK3∗, fSLAE = 0.85

normalized RK4∗, fSLAE = 0.85

5Le, H. and Moin, P. (1991), ”An improvement of fractional step methods for the incompressible
Navier-Stokes equations”. Journal of Computational Physics 92, pp. 369-379

15 / 15

