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Runge-Kutta applied to Navier-Stokes
°

Runge-Kutta applied to Navier-Stokes

Starting point...

+ C(us)uc

Mus = 0,

— Duc + QGcpe = 0

o Putting together both expressions...

du,
dt

= (I, — GL™*M) F(us)uc
N—————

Projection operator, P

e Hard to compute PF(us), thus projection
method is used.

According to Sanderse and Koren 3,

Upit = Un+ At Y b

i—1
*
u; =u, + At E ajiF;
j=1 i=1

1, 1,
L\U,' = EDU’- L\Un+1 = EDUn+1
ui=uj — AtGV;  upp =up — AtGV,

3Sanderse, B., Koren, B. (2012), " Accuracy analysis of explicit Runge-Kutta methods applied to the
incompressible Navier-Stokes equations”, Journal of Computational Physics 231 (8), pp. 3041-3063
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Self-adaptive time integration
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Stability region of Runge-Kutta
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Butcher tableau, A = [aj]i=1,... s;j=1,....s/ 20
b= (by by ... by o
e In general, R(z) = 1+ zb" (Is — zA) 11, o
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Self-adaptive time integration
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Computation of eigenbounds

@ Need to compute the eigenbounds of
F(us) = D — C(us)
o If D and C(us) are discretized with a

symmetry-preserving scheme?,

Ar < —[Ap| + iXc

@ A\p and A¢ can be computed
independently with Gershgorin circle
theorem
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Self-adaptive time integration
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From stability to efficiency regions

Do stability-region bounded At offer the most efficient integration?

Not always. It provides the most efficient integration given a integration scheme.

7/15



Self-adaptive time integration
[e]e] lele}

From stability to efficiency regions

Do stability-region bounded At offer the most efficient integration?

Not always. It provides the most efficient integration given a integration scheme.
What if... instead of using a single scheme, a pool of schemes is used?

7/15



Self-adaptive time integration
[e]e] lele}

From stability to efficiency regions

Do stability-region bounded At offer the most efficient integration?

Not always. It provides the most efficient integration given a integration scheme.
What if... instead of using a single scheme, a pool of schemes is used?

Computational efficiency region

| \

Combination of a set of stability regions normalized by the ratio of wall clock times per
iteration between the current scheme and Euler scheme, TMethod-

With the generalized implementation in our in-house CFD&HT code...

s—1
Tat(s) = sTsiae +33sTspmy + 5 <24 + 32> Toxpy + 105 T 5z

7/15



Self-adaptive time integration
[e]e] lele}

From stability to efficiency regions

Do stability-region bounded At offer the most efficient integration?

Not always. It provides the most efficient integration given a integration scheme.
What if... instead of using a single scheme, a pool of schemes is used?

| \

Computational efficiency region

Combination of a set of stability regions normalized by the ratio of wall clock times per
iteration between the current scheme and Euler scheme, TMethod-

With the generalized implementation in our in-house CFD&HT code...

s—1
Tat(s) = sTsiae +33sTspmy + 5 <24 + 32> Toxpy + 105 T 5z

TMethod (S) = ;2:&; =2 (1 + g(s - 1)7%:({)) e

7/15



Self-adaptive time integration
[e]ele] o}

stability to efficiency regions
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From stability to efficiency regions
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Additional conditions
Other possible conditions can be set to limit or handicap the proposed schemes in order to
filter according to different categories.
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Self-adaptive time integration
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From stability to efficiency regions

Algorithm 1: Self-adaptive efficiency time-step scheme
Data: Pool of schemes, (Scheme 1,Scheme 2,...,Scheme n),Eigenbounds (A¢, Ap), Scale
factor fas
Result: Time-step, At
i=1;
is == 1I;
Ats == 0.0;
while i < n do
Aty ; = Ats(Scheme;, Ac, Ap);
if Ats,i/TSChemei > At then
Ats = Ats,i/TScheme,-;
s := 1,
end
end
return At := fa:At;(Scheme;,, A\c, Ap);

© N s W=

-
- O
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Numerical experiments
@00

Numerical experiments

Three-dimensional Taylor-Green vortex

@ Initial conditions:

Uy = Uoi sin(x) cos(y) cos(z)

’ V3

2
uy.0 = Up—= cos(x)sin(y) cos(z) Method Num. stag. s Ord. acc. p
\f Euler 1 1
uz0 = Up—= cos(x) cos(y)sin(z) Heun RK2 2 2
V3 Heun RK3 3 3
Standard RK4 4 4

® Run until t = 20%7754
o far = [0.15,0.5], Re = 1500
e (32,64)3 grid, cube with a side length of

2w )
4Capuano, F., Coppola, G., and de Luca, L. (2015), " An efficient time advancing strategy for
energy-preserving simulations”. Journal of Computational Physics 295, pp. 209-229
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Numerical experiments
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Conclusion
Method

@ Method is born as an evolution of self-adaptive strategies:
o Pool of schemes chosen previous to the start of the simulation
o Computational efficiency region allows addition of constraints or handicaps to methods to
set other characteristics to just performance
o Computation of eigenbounds might be swapped for a more efficient method
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Conclusion

Numerical tests

@ Numerical tests have provided improved performance vs the schemes presented on the
pool.

@ Starts simulation with higher order methods (RK4, RK3) to move to lower order with the
evolution of the simulation (Euler).

@ Could be tested with higher Re to check if the high order methods are more relevant in
the solution.

@ Method performance improves when cost per iteration is reduced, or for bigger fa;
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Conclusion

Future perspectives

Can other properties from
Runge-Kutta integration be
exploited?

o Computation of W only at the
end of the stage, according to Le
and Moin®:

o Reduction of accuracy to
second order

o Stability region of the method
is preserved

TMethod* = 1+ (s — 1)(1 — fsLaE)

V.

5Le, H. and Moin, P. (1991), " An improvement of fractional step methods for the incompressible

Navier-Stokes equations”. Journal of Computational Physics 92, pp. 369-379
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= 5. —— min O(A)
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