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Abstract – In this work, we aim to shed light to the following research question: is the complexity of numerically

solving Poisson’s equation increasing or decreasing for very large DNS and LES simulations of incompressible

flows? Physical and numerical arguments are combined to derive power law scalings at very high Reynolds

numbers.

1. Introduction

We consider the simulation of turbulent incompressible flows of Newtonian fluids. Under these

assumptions, the governing equations read

∂tu+(u ·∇)u = 2ρ−1∇ · (µS(u))−∇p, ∇ ·u = 0, (1)

where u(x, t) and p(x, t) denote the velocity and pressure fields, and S = 1/2(∇u+∇uT ) is

the rate-of-strain tensor. The density, ρ , is constant whereas the dynamic viscosity, µ(x, t),
may depend on space and time. Notice that for (spatially) constant viscosity the diffusive term

simplifies to ν∇2u where ν = µ/ρ is the kinematic viscosity. Then, these equations have to be

discretized both in space and time.

The basic physical properties of the Navier–Stokes (NS) equations (1) are deduced from

the symmetries of the differential operators (see Ref.[1], for example). In a discrete setting,

such operator symmetries must be retained to preserve the analogous (invariant) properties of

the continuous equations [2, 3]: namely, the convective operator is represented by a skew-

symmetric coefficient matrix, the diffusive operator by a symmetric, negative-definite matrix

and the divergence is minus the transpose of the gradient operator. Therefore, even for coarse

grids, the energy of the resolved scales of motion is convected in a stable manner, i.e. the discrete

convective operator transports energy from a resolved scale of motion to other resolved scales

without dissipating any energy, as it should be from a physical point-of-view.

On the other ands, from the pioneering turbulent channel flow simulations in the mid-’80s,

DNS and LES simulations of incompressible flows have usually been carried out by means

of a fractional step method (FSM) together with an explicit or semi-implicit time-integration

methods for momentum, i.e. the convective term is virtually always integrated with an explicit

scheme whereas the diffusive term may be treated either implicitly or explicitly. This leads to

the following CFL restrictions for the time-step

∆tconv ∼
∆x

U
∆tdiff ∼

∆x2

ν
, (2)

where ∆x represents the grid spacing and U is a characteristic velocity of the large flow scales.

Then, the pressure-velocity coupling is solved with a FSM leading to a Poisson equation for
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pressure (or some sort of pseudo-pressure),

∇2pn+1 =
1

∆t
∇ ·up, (3)

where up is a predictor velocity obtained by advancing on time the momentum equation. Once

this Poisson equation is solved, the new (incompressible) velocity field is obtained, un+1 =
up − ∆t∇p. Poisson equation is the most time-consuming part and the main bottleneck for

extreme-scale CFD simulations. In this context, we aim to shed light to the following research

question: is the complexity of numerically solving Poisson’s equation increasing or decreasing

for very large DNS and LES simulations of incompressible flows?

2. Two competing effects

The never-ending increasing capacity of modern HPC system enables running DNS simulations

at higher and higher Reynolds number, Re. Estimations of how the number of grid points, Nx,

and time-steps, Nt , grow with Re =Ul/ν can be easily obtained from the classical Kolmogorov

theory (K41)

NK41
x =

∆x

Lx

∼
η

l
∼ Re−3/4 NK41

t =
∆t

tsim

∼
tη

tl
∼

η

l

U

u
∼ Re−3/4Re1/4 = Re−1/2, (4)

where Lx and tsim are the domain size and the time integration period, which are assumed to be

similar to the size of the largest scales, l, and its corresponding characteristic time, tl ∼ l/U ,

i.e. Lx ∼ l and tsim ∼ tl. For a DNS, we can also assume that ∆x ∼ η and ∆t ∼ tη ∼ η/u, where

tη ∼ η/u and u are the characteristic time and velocity of the Kolmogorov length scales, η .

Plugging this into Eqs.(2) leads to the following estimations

Nconv
t ∼

∆tconv

tl
∼

U

l

lRe−3/4

U
= Re−3/4 Ndiff

t ∼
∆tdiff

tl
∼

U

l

l2(Re−3/4)2

ν
= Re−1/2. (5)

Therefore, we can conclude that
∆t

tl
∼ Reα , (6)

where α = −1/2 for the K41 theory (see Eq. 4) or diffusion dominated (see Eq. 5), and α =
−3/4 for convection dominated (see Eq. 5). Therefore, higher Re leads to smaller time-steps,

∆t, leading to better initial guess for the Poisson equation. Namely, assuming that ∇ · un = 0

and taking pn as initial guess, we obtain the following initial residual

r0 = ∇2 pn −
1

∆t
∇ ·up,n+1 (3)

=
1

∆t

(

∇ ·up,n −∇ ·up,n+1
)

≈
∂∇ ·up

∂ t
, (7)

where ∇ · up ≈ ∆t∇ · (u ·∇u) = 2∆tQG and QG = −1/2tr(G2) is the second invariant of the

velocity gradient tensor, G≡ ∇u, leading to

r0 ≈ 2∆t
∂QG

∂ t
, (8)

Therefore, smaller time-steps will benefit the convergence of Poisson solver.
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Figure 1: Left: illustrative explanation of the two competing effects on the solution of Poisson’s equation

when increasing Re number: time-step, ∆t, decreases whereas the range of scales increases. Right:

{α ,β} phase space. Solid black line corresponds to ∝ Re0 in Eqs.(14) and (15), i.e. neutral effect of

Re-number in the total number of iterations.

On the other hand, increasing Re also leads to finer meshes (see Eq. 4) and, therefore, to

more ill-conditioned systems with a wider and wider range of scales to be resolved. In the

forthcoming analysis, the spectral distribution of the initial residual, r̂0
k , plays a crucial role. In

general, we can assume a power law scaling within the internal range

∂QG

∂ t
∝ kβ =⇒ r̂0

k ∝ ∆tkβ , (9)

where k is the wavenumber. A power law scaling for QG can be derived from the k−7/3 scaling

of the shell-summed pressure spectrum [4],

(Q̂G)k ∝ k2(k−7/3)1/2 = k5/6. (10)

Then, the value of β may be estimated from the dynamics of the invariants obtained from the

so-called restricted Euler equations,

dQG

dt
=−3RG =⇒

∂QG

∂ t
=−(u ·∇)QG−3RG (11)

where RG= det(G)= 1/3tr(G3) is the third invariant of G. In summary, there are two competing

effects (see Figure 1, left) when increasing Re number: time-step, ∆t, decreases whereas the

range of scales increases.

3. On the solver convergence

Using the Parseval’s theorem, we can relate the L2-norm of the residual with the integral of r̂k

for all the wavenumbers

||r||2 =
∫

Ω
r2dV =

∫ kmax

1
r̂2

kdk, (12)
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where kmax ≈ 1/η ∼ Re3/4. Then, the residual after n iterations can be computed as

||rn||2 =

∫ kmax

1

(

ω̂n
k r̂0

k

)2
dk

(6)(9)
≈

∫ Re3/4

1
ω̂2n

k Re2αk2β dk, (13)

where ω̂k = r̂n+1
k /r̂n

k is the convergence ratio of the solver. For instance, for a Jacobi solver,

ω̂k = cos(π
2

ρ) where ρ ≡ k/kmax. In this case, using a quadratic approximation of the cos(x)≈

1−4x2/π2 leads to

||rn||2 ≈
Re2(α+3/4(β+1/2))

2(2n+1)
. (14)

This analysis can be extended for a multigrid (MG) solver with lmax ≈ 3
4

log2 Re levels and

Jacobi as smoother

||rn||2 ≈
Re2(α+3/4(β+1/2))

2(2n+1)

{(

lmax

∑
l=0

(3/4)2n+1

22l

)

+
1

22lmax+1

}

. (15)

Notice that compared with Eq.(14), the convergence is strongly accelerated by the term in brack-

ets, which in the limit tends to (3/4)2n. Nevertheless, the power law scaling with Re is the same;

therefore, the regions defined in the {α,β} phase space remain unchanged (see Figure 1, right).

DNS of homogeneous isotropic turbulence are being carried out to find out the exact value of β
in Eq.(9). Results will be presented during the conference.
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