

Exa, zetta, yotta and beyond

Àdel Alsalti-Baldellou^{1,2}, F. Xavier Trias¹, Assensi Oliva¹

¹Heat and Mass Transfer Technological Center, Technical University of Catalonia ²Termo Fluids S.L. Carrer de Magí Colet 8, 08204 Sabadell (Barcelona), Spain

Exa, zetta, yotta and beyond: On the evolution of Poisson solvers for extreme-scale simulations

Àdel Alsalti-Baldellou^{1,2}, F. Xavier Trias¹, Assensi Oliva¹

¹Heat and Mass Transfer Technological Center, Technical University of Catalonia ²Termo Fluids S.L. Carrer de Magí Colet 8, 08204 Sabadell (Barcelona), Spain

Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions 00

Contents

- 2 Two competing effects
- 3 Residual of Poisson's equation
- 4 Solver convergence

5 Results

6 Conclusions

Motivation ●00	Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions 00

Motivation

Research question #1:

• How can we develop **portable** and **efficient** CFD codes for large-scale simulations on modern supercomputers?

	1995	2000	2005	2010	2015	2020	
Techn	ology Tren	ds in HPC		GPU MIC		FPGA	
	single-core (CPU clusters	multi-c	ore CPU clusters		hybrid clusters	\rightarrow
				W HBN	A ANVLIP	ik	

¹X.Álvarez, A.Gorobets, F.X.Trias. A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers. **Computers & Fluids**, 214:104768, 2021.

²Å.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson's equation. Journal of Computational Physics, 486:112133, 2023.

Motivation ●00	Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions

Motivation

Research question #1:

• How can we develop **portable** and **efficient** CFD codes for large-scale simulations on modern supercomputers?

HPC²: portable, algebra-based framework for heterogeneous computing is being developed¹. Traditional stencil-based data and sweeps are replaced by algebraic structures (sparse matrices and vectors) and kernels. SpMM-based strategies to increase the arithmetic intensity are being considered².

¹X.Álvarez, A.Gorobets, F.X.Trias. A hierarchical parallel implementation for heterogeneous computing. Application to algebra-based CFD simulations on hybrid supercomputers. **Computers & Fluids**, 214:104768, 2021.

² Å.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. *Exploiting spatial symmetries for solving Poisson's equation*. Journal of Computational Physics, 486:112133, 2023.

Tera, Peta, Exa,..., Zetta, Yotta

GFLOPS

~10 years

	PetaFLOPS		#1 in LINPACK	#1 in HPCG	Cutting-edge CFD simulation	'Routine' CFD simulation				
Zetta	106		2037	2047						
Exa	10 ³	years	(Frontier)	2032						
Peta	1	ars 14	2008 (Roadrunner)	2018 (Summit)						
Tera	10-3	11 ye	1997 (ASCI Red)	No data						

			~10 y	ears ~5 y	ears	
	PetaFLOPS		#1 in LINPACK	#1 in HPCG	Cutting-edge CFD simulation	'Routine' CFD simulation
Zetta	106		2037	2047	2052	
Exa	10 ³	years	(Frontier)	2032	2037	
Peta	1	ars 14	2008 (Roadrunner)	2018 (Summit)	2023	
Tera	10 ⁻³	11 ye	1997 (ASCI Red)	No data		

Motivation 0●0	Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions 00

			~10 y	rears ∼5 y	ears ~10	years
			0.0		• > . ii=	
	PetaFLOPS		#1 in LINPACK	#1 in HPCG	Cutting-edge CFD simulation	'Routine' CFD simulation
Zetta	106		2037	2047	2052	2062
Exa	10 ³	years	End (Frontier)	2032	2037	2047
Peta	1	ars 14	2008 (Roadrunner)	2018 (Summit)	2023	2033
Tera	10 ⁻³	11 ye	1997 (ASCI Red)	No data		

Motivation 00●	Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions
Motiva	tion				

Research question #2:

• Will the **complexity** of numerically solving **Poisson's equation** increase or decrease for **very large scale DNS/LES** simulations of incompressible turbulent flows?

DNS³ of the turbulent flow around a square cylinder at Re = 22000

³F.X.Trias, A.Gorobets, A.Oliva. *Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study*, **Computers&Fluids**, 123:87-98, 2015.

Step 1:
$$\frac{\vec{u}^{p} - \vec{u}^{n}}{\Delta t} = \frac{3}{2} \vec{R}(\vec{u}^{n}) - \frac{1}{2} \vec{R}(\vec{u}^{n-1})$$

Step 1:
$$\frac{\vec{u}^{p} - \vec{u}^{n}}{\Delta t} = \frac{3}{2} \vec{R} (\vec{u}^{n}) - \frac{1}{2} \vec{R} (\vec{u}^{n-1})$$
Step 2:
$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$

$$\int_{\Lambda t} \frac{3}{2} \vec{R} (\vec{u}^{n}) - \frac{1}{2} \vec{R} (\vec{u}^{n-1}) - \nabla p^{n+1}$$
Semi-discrete (just in time)
NS equations
$$\int_{NS \text{ equations}} \frac{\vec{u}^{n+1} - \vec{u}^{n}}{\Delta t} = \frac{3}{2} \vec{R} (\vec{u}^{n}) - \frac{1}{2} \vec{R} (\vec{u}^{n-1}) - \nabla p^{n+1}$$

$$\nabla \cdot \vec{u}^{n+1} = 0$$

Step 1:
$$\frac{\vec{u}^{p} - \vec{u}^{n}}{\Delta t} = \frac{3}{2} \vec{R} (\vec{u}^{n}) - \frac{1}{2} \vec{R} (\vec{u}^{n-1})$$
Step 2:
$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Step 3:
$$\vec{u}^{n+1} = \vec{u}^{p} - \Delta t \nabla p^{n+1}$$

$$\int_{u}^{\Delta t} \frac{\vec{u}^{n+1} - \vec{u}^{n}}{\Delta t} = \frac{3}{2} \vec{R} (\vec{u}^{n}) - \frac{1}{2} \vec{R} (\vec{u}^{n-1}) - \nabla p^{n+1}$$
Sequations
$$\int_{v}^{v} \vec{u}^{n+1} = 0$$

Poisson's equation: getting more tough or not?

Research question #2:

 Will the complexity of numerically solving Poisson's equation increase or decrease for very large scale DNS/LES simulations of incompressible turbulent flows?

$$\left(\nabla^2 p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^p\right)$$

Two competing effects: who (if any) will eventually win?

Re
$$\uparrow$$
 $\Delta x \downarrow \longrightarrow N_x \uparrow \longrightarrow$ Larger system \downarrow
 $\Delta t \downarrow \longrightarrow$ Better initial guess \uparrow

Poisson's equation: getting more tough or not?

Research question #2:

$$Ra = 10^{8}$$

⁴F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection*, **Phys.Rev.Fluids**, 5:024603, 2020.

Poisson's equation: getting more tough or not?

Research question #2:

⁴F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection*, **Phys.Rev.Fluids**, 5:024603, 2020.

 Motivation
 Two competing effects
 Residual of Poisson's equation
 Solver convergence
 Results
 Conclusions

 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Poisson's equation: getting more tough or not?

Research question #2:

⁴F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection*, **Phys.Rev.Fluids**, 5:024603, 2020.

 Motivation
 Two competing effects
 Residual of Poisson's equation
 Solver convergence
 Results
 Conclusions

 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Poisson's equation: getting more tough or not?

Research question #2:

⁴F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection*, **Phys.Rev.Fluids**, 5:024603, 2020.

Smaller and smaller, but how much?

Smaller and smaller, but how much?

Two competing effects: who (if any) will eventually win?

Re
$$\uparrow$$
 $\Delta x \downarrow \longrightarrow N_x \uparrow \longrightarrow$ Larger system \downarrow
 $\Delta t \downarrow \longrightarrow$ Better initial guess \uparrow

In summary:

$$\frac{1}{N_x^{K41}} = \frac{\Delta x}{L_x} \sim \frac{\eta}{l} \propto \text{Re}^{-3/4}$$

$$\alpha = -1/2 \quad (\text{ K41 or diffusion dominated })$$

$$\frac{\Delta t}{t_l} \sim \text{Re}^{\alpha}$$

$$\alpha = -3/4 \quad (\text{ convection dominated })$$

Motivation 000	Two competing effects	Residual of Poisson's equation ●00	Solver convergence	Results 00	Conclusions

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$

$$\downarrow \text{Initial guess} \Rightarrow p^{n}$$

$$r^{o} = \nabla^{2} p^{n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1}$$

Motivation Two competing effects Residual of Poisson's equation Solver convergence Results Concl 000 00 00 00 00 00 00

Motivation 000	Two competing effects	Residual of Poisson's equation ●00	Solver convergence	Results 00	Conclusions

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$

$$\downarrow \text{Initial guess} \Rightarrow p^{n}$$

$$r^{o} = \nabla^{2} p^{n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1} = \frac{1}{\Delta t} \nabla \cdot u^{p,n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = \nabla \cdot \frac{\partial u^{p}}{\partial t}$$

$$\tilde{r}^{o} = \nabla^{2} \tilde{p}^{n} - \nabla \cdot u^{p,n+1} \approx \nabla \cdot u^{p,n} - \nabla \cdot u^{p,n+1} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t} = \Delta t \nabla \cdot \frac{\partial u^{p}}{\partial t}$$

$$\uparrow \text{Initial guess} \Rightarrow \tilde{p}^{n} = \Delta t p^{n}$$

$$\nabla^{2} \tilde{p}^{n+1} = \nabla \cdot \vec{u}^{p}$$

Motivation 000	Two competing effects	Residual of Poisson's equation ○●○	Solver convergence	Results 00	Conclusions

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess $\rightarrow p^{n}$

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t}$$

$$\tilde{r}^{o} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t}$$
Initial guess $\rightarrow \tilde{p}^{n} = \Delta t p^{n}$

$$\nabla^{2} \tilde{p}^{n+1} = \nabla \cdot \vec{u}^{p}$$

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess $\rightarrow p^{n}$

$$Q_{G} - criterion$$

Motivation Two competing effects Residual of Poisson's equation Solver convergence Resu	ults Conclusions
--	------------------

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess $\Rightarrow p^{n}$

$$Q_{G} - criterion$$

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t \frac{\partial Q_{G}}{\partial t}$$

$$R_{G} = det(G) = \frac{1}{3} tr(G^{3})$$

$$\overline{r}^{o} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t^{2} \frac{\partial Q_{G}}{\partial t}$$

$$Q_{G} = -\frac{1}{2} tr(G^{2}) \text{ where } G = \nabla u^{n}$$

Exact equations for restricted Euler:

$$\frac{dQ_G}{dt} = -3R_G \longrightarrow \frac{\partial Q_G}{\partial t} = -(u \cdot \nabla)Q_G - 3R_G \quad \text{s.B.Pope, 2000.}$$

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess $\rightarrow p^{n}$

$$Q_{G} - criterion$$

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t \{(u \cdot \nabla) Q_{G} + 3 R_{G}\}$$

$$\tilde{r}^{o} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t^{2} \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t^{2} \{(u \cdot \nabla) Q_{G} + 3 R_{G}\}$$

Exact equations for restricted Euler:

$$\frac{dQ_G}{dt} = -3R_G \longrightarrow \frac{\partial Q_G}{\partial t} = -(u \cdot \nabla)Q_G - 3R_G \quad \text{S.B.Pope, 2000}$$

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess $\rightarrow p^{n}$

$$Q_{G} - criterion$$

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t \{(u \cdot \nabla) Q_{G} + 3 R_{G}\}$$

$$\tilde{r}^{o} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t^{2} \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t^{2} \{(u \cdot \nabla) Q_{G} + 3 R_{G}\}$$
Initial guess $\rightarrow \tilde{p}^{n} = \Delta t p^{n}$

$$\nabla^{2} \tilde{p}^{n+1} = \nabla \cdot \vec{u}^{p}$$
S.B.Pope, 2000.

 $\frac{\Delta t}{t_{l}} \sim \operatorname{Re}^{\alpha} \begin{cases} \alpha = -1/2 & \text{(K41 or diffusion dominated)} \\ \alpha = -3/4 & \text{(convection dominated)} \end{cases}$

$$\frac{1}{N_x^{\rm K41}} = \frac{\Delta x}{L_x} \sim \frac{\eta}{l} \propto {\rm Re}^{-3/4}$$

Residual of Poisson's equation in Fourier space

In summary:

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t^{p} \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t^{p} \{ (u \cdot \nabla) Q_{G} + 3 R_{G} \}$$

$$p = \{1, 2\}$$

$$p = \{1, 2\}$$

$$\nabla^{2} p^{\alpha t} = \nabla \cdot \overline{u}^{p}$$
Hypothesis:
(inertial range)

$$\left(\frac{\partial Q_{G}}{\partial t} \right)_{k} \propto k^{\beta} \longrightarrow \hat{r}_{k}^{o} \propto \Delta t^{p} k^{\beta} \sim \operatorname{Re}^{p\alpha} k^{\beta} = \operatorname{Re}^{\tilde{\alpha}} k^{\beta}$$

$$\underline{\Delta t}_{i} \sim \operatorname{Re}^{\alpha} \left\{ \begin{array}{c} \alpha = -1/2 & (\text{ K41 or diffusion dominated }) \\ \alpha = -3/4 & (\text{ convection dominated }) \end{array} \right.$$

$$\frac{1}{N_{k}^{K41}} = \frac{\Delta x}{L_{k}} \sim \frac{\eta}{l} \propto \operatorname{Re}^{-3/4}$$

Residual of Poisson's equation in Fourier space

In summary:

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t^{p} \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t^{p} \{ (u \cdot \nabla) Q_{G} + 3 R_{G} \} \qquad p = \{1, 2\}$$

$$\nabla^{2} \bar{p}^{u_{1}} = \nabla \cdot \bar{v}^{p}$$
Hypothesis:
(inertial range)

$$\left(\frac{\partial Q_{G}}{\partial t} \right)_{k} \propto k^{\beta} \longrightarrow \hat{r}_{k}^{o} \propto \Delta t^{p} k^{\beta} \sim \operatorname{Re}^{p\alpha} k^{\beta} = \operatorname{Re}^{\tilde{\alpha}} k^{\beta}$$

$$\underbrace{\Delta t}_{t_{1}} \sim \operatorname{Re}^{\alpha} \left\{ \begin{array}{c} \alpha = -1/2 & (\text{ K41 or diffusion dominated }) \\ \alpha = -3/4 & (\text{ convection dominated }) \end{array} \right\}$$
Parseval's theorem

$$\left\| |\mathbf{r}| |^{2} = \int_{\Omega} r^{2} d\mathbf{V} = \int_{1}^{k_{max}} \hat{r}_{k}^{2} dk$$

Residual of Poisson's equation in Fourier space

In summary:

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t^{p} \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t^{p} \{ (u \cdot \nabla) Q_{G} + 3 R_{G} \} \qquad p = \{1, 2\}$$

$$\nabla^{2} \bar{p}^{ast} = \nabla \cdot \bar{u}^{p}$$
Hypothesis:
(inertial range)

$$\left(\frac{\partial Q_{G}}{\partial t} \right)_{k} \propto k^{\beta} \longrightarrow \boxed{\hat{r}_{k}^{o} \propto \Delta t^{p} k^{\beta} \sim \operatorname{Re}^{p\alpha} k^{\beta} = \operatorname{Re}^{\bar{\alpha}} k^{\beta}}$$

$$\left[\frac{\Delta t}{t_{l}} \sim \operatorname{Re}^{\alpha} \left\{ \begin{array}{c} \alpha = -1/2 & (K41 \text{ or diffusion dominated}) \\ \alpha = -3/4 & (\text{ convection dominated}) \end{array} \right] \right]$$
Parseval's theorem

$$\left[\frac{1}{N_{k}^{K41}} = \frac{\Delta x}{L_{k}} \sim \frac{\eta}{l} \propto \operatorname{Re}^{-3/4} \right]$$

Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions

$$||\mathbf{r}^{n}||^{2} = \int_{1}^{k_{max}} (\hat{\omega}_{k}^{n} \hat{\mathbf{r}}_{k}^{0})^{2} dk \approx \int_{1}^{\mathrm{Re}^{3/4}} \hat{\omega}_{k}^{2n} \mathrm{Re}^{2\tilde{\alpha}} k^{2\beta} dk$$
$$\hat{\omega} = \frac{\hat{\mathbf{r}}_{k}^{n+1}}{\hat{\mathbf{r}}_{k}^{n}} \sqrt{\frac{\hat{\mathbf{r}}_{k}^{o} \propto \Delta t^{p} k^{\beta} \sim \mathrm{Re}^{p\alpha} k^{\beta} = \mathrm{Re}^{\tilde{\alpha}} k^{\beta}}{\hat{\mathbf{r}}_{k}^{o} \propto \Delta t^{p} k^{\beta} \sim \mathrm{Re}^{p\alpha} k^{\beta} = \mathrm{Re}^{\tilde{\alpha}} k^{\beta}}}$$

$$||\mathbf{r}||^{2} = \int_{\Omega} r^{2} dV = \int_{1}^{k_{max}} \hat{\mathbf{r}}_{k}^{2} dk \approx \int_{1}^{\operatorname{Re}^{3/4}} \hat{\mathbf{r}}_{k}^{2} dk$$

Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence ●0	Results 00	Conclusions

Jacobi:
$$||r^{n}||^{2} \propto \frac{\operatorname{Re}^{2(\tilde{\alpha}+3/4(\beta+1/2))}}{2(2n+1)}$$

$$||\mathbf{r}||^{2} = \int_{\Omega} r^{2} dV = \int_{1}^{k_{max}} \hat{\mathbf{r}}_{k}^{2} dk \approx \int_{1}^{\operatorname{Re}^{3/4}} \hat{\mathbf{r}}_{k}^{2} dk$$

Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence ●0	Results 00	Conclusions

Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence ●0	Results 00	Conclusions

Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence ○●	Results 00	Conclusions

 $\{ ilde{lpha},eta\}$ phase space

Motivation Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions
----------------------------------	--------------------------------	--------------------	---------------	-------------

 $\{\tilde{\alpha},\beta\}$ phase space

Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence ○●	Results 00	Conclusions

 $\{\tilde{\alpha},\beta\}$ phase space

Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence ○●	Results 00	Conclusions

 $\{\tilde{\alpha},\beta\}$ phase space

Homogeneous isotropic turbulence

Kolmogorov theory predictions

SpNS: pseudo-spectral CFD code publicly available at https://github.com/adalbal/SpNS.

Kolmogorov theory predictions

T.Gotoh, D.Fukayama. Pressure spectrum in homogeneous turbulence. Physical Review Letters, 86(17), 3775-3778, 2001.

Kolmogorov theory predictions

T.Gotoh, D.Fukayama. Pressure spectrum in homogeneous turbulence. Physical Review Letters, 86(17), 3775–3778, 2001.

 $\nabla^2 \widetilde{p}^{n+1} = \nabla \cdot \vec{u}^p = 2 \Delta t Q_G$ S.B.Pope. *Turbulent flows.* Cambridge University Press, 2000.

 $\nabla^2 \widetilde{p}^{n+1} = \nabla \cdot \vec{u}^p = 2 \Delta t Q_G$

S.B.Pope. Turbulent flows. Cambridge University Press, 2000.

Homogeneous isotropic turbulence

New derivations

Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions ●0
Conclu	ding remarks				

• **Two competing effects** on the convergence of Poisson's equation have been identified.

Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions ●0

Concluding remarks

- Two competing effects on the convergence of Poisson's equation have been identified.
- The {α, β} phase space is divided in two regions depending on the solver convergence.

Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions ●0

Concluding remarks

- **Two competing effects** on the convergence of Poisson's equation have been identified.
- The {α, β} phase space is divided in two regions depending on the solver convergence.
- First numerical results match well with the developed theory prediction $\beta \approx 11/6$

Motivation 000	Two competing effects	Residual of Poisson's equation	Solver convergence	Results 00	Conclusions ●0

Concluding remarks

- Two competing effects on the convergence of Poisson's equation have been identified.
- The {α, β} phase space is divided in two regions depending on the solver convergence.
- First numerical **results** match well with the **developed theory** prediction $\beta \approx 11/6$

On-going and near future research:

- Carrying out simulations at higher Re_{λ}
- Extending the analysis to more complex flows

Thank you for your attendance