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Motivation
Research question #1:

How can we develop portable and efficient CFD codes for large-scale
simulations on modern supercomputers?
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HPC2: portable, algebra-based framework for heterogeneous computing is being
developed1. Traditional stencil-based data and sweeps are replaced by algebraic
structures (sparse matrices and vectors) and kernels. SpMM-based strategies to increase
the arithmetic intensity are being considered2.

1X.Álvarez, A.Gorobets, F.X.Trias. A hierarchical parallel implementation for heterogeneous computing. Application to
algebra-based CFD simulations on hybrid supercomputers. Computers & Fluids, 214:104768, 2021.

2À.Alsalti-Baldellou, X.Álvarez-Farré, F.X.Trias, A.Oliva. Exploiting spatial symmetries for solving Poisson’s equation.
Journal of Computational Physics, 486:112133, 2023.
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Motivation
Research question #2:

Will the complexity of numerically solving Poisson’s equation
increase or decrease for very large scale DNS/LES simulations of
incompressible turbulent flows?

DNS3 of the turbulent flow around a square cylinder at Re “ 22000
3F.X.Trias, A.Gorobets, A.Oliva. Turbulent flow around a square cylinder at Reynolds

number 22000: a DNS study, Computers&Fluids, 123:87-98, 2015.
5 / 17
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Poisson’s equation: a quick reminder

  

u⃗
n+1−u⃗

n
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1

2
R⃗ (u⃗n−1)−∇ p

n+1

∇⋅u⃗n+1=0

Semi-discrete 
(just in time)
NS equations

Orthogonal functions

∇ p
u⃗ (∇⋅⃗u=0)

Solutions of NS lie
on this space
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Poisson’s equation: getting more tough or not?
Research question #2:

Will the complexity of numerically solving Poisson’s equation
increase or decrease for very large scale DNS/LES simulations of
incompressible turbulent flows?

  

∇
2
p

n+1
=

1

Δ t
∇⋅u⃗

p

Re↑
Δ x↓ N x↑

Δ t↓

Larger system

Better initial guess ↑

↓

Two competing effects: who (if any) will eventually win?

Ra “ 108 Ra “ 1010 Ra “ 1011

208 ˆ 208 ˆ 400 768 ˆ 768 ˆ 1024 1662 ˆ 1662 ˆ 2048
17.5M 607M 5600M

4F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. Flow topology dynamics in a 3D phase
space for turbulent Rayleigh-Bénard convection, Phys.Rev.Fluids, 5:024603, 2020.
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Smaller and smaller, but how much?

  

From classical 
K41 theory:
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Two competing effects: who (if any) will eventually win?

l : biggest eddies ( driving scale )

η : smallest eddies ( Kolmogorov length scale )
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how 
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Residual of Poisson’s equation
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Residual of Poisson’s equation
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S.B.Pope, 2000.
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Residual of Poisson’s equation in Fourier space
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Residual of Poisson’s equation in Fourier space
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Solver convergence
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Solver convergence
tα̃, βu phase space
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Homogeneous isotropic turbulence
Kolmogorov theory predictions
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Homogeneous isotropic turbulence
New derivations
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Concluding remarks

Two competing effects on the convergence of
Poisson’s equation have been identified.

The tα̃, βu phase space is divided in two regions
depending on the solver convergence.

First numerical results match well with the
developed theory prediction β « 11{6
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