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Jesús Ruano

PHD THESIS

submitted to the
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Abstract
With increased noise restrictions applied to aviation, the Computational

AeroAcoustics community is growing day by day.
In Computational AeroAcoustics, scientists deal with a numerical error

not always considered in other disciplines: the dispersion error. This error
generates that waves with different frequencies travel at different speeds,
distorting the acoustic spectrum.

At the same time, they need to deal with problems related to turbulence
modeling but requiring time-dependent solutions, thus avoiding RANS meth-
ods. At the same time, they need to solve problems involving high-speed
regimes flows and/or geometries with increased complexity, therefore making
it difficult to apply an LES model fulfilling its mesh requirements.

Dispersion error has classically been studied by means of projecting the
derivative onto the Fourier space and then analyzing the difference between
the numerical and analytical wavenumber.

However, such a method is only possible to be applied to evenly spaced
domains with periodic boundary conditions and linear discretization schemes.

Here, we present a new methodology to numerically analyze and evaluate
this error, without the main constraint of being limited to structured uniform
meshes but also applicable to stretched ones. At the same time, the new
method is able to handle non-linear schemes, such as blendings between
upwinded and central schemes, usually used within the CAA community.

The extracted conclusions with this new method, when applied to stretched
grids, do not show a clear difference between high and low-order numerical
schemes, as the former quickly degrades its order of accuracy.

Detached-Eddy Simulation (DES) has gathered a lot of attention these
last years as an interesting approach for covering the gap between RANS
and LES turbulence models in terms of both computational resources and
degree of modeling. DES is able to produce reliable unsteady results without
having excessively stringent mesh requirements. To check the validity of the
conclusions extracted in the first part of this work, together with the feasibility
of DES, we simulate a subsonic round jet.
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vi Abstract

We will be using two different numerical codes: NOISEtte, which uses
high-accuracy schemes, and OpenFOAM, an open-source code that uses low-
order schemes. This allows us to compare the effect that the order of the
scheme has on the acoustic spectra of the subsonic round jet.

At the same time, we will analyze how the filtering length scale and the
subgrid turbulence model are able to attenuate one of the main issues within
DES: the unphysical slow transition from RANS to LES, known as the Gray
Area problem. If the turbulence model is not able to minimize the effects of
this transition, would result in unphysical noise generated that could not be
distinguished from the correct one.

The conclusions extracted from this analysis show a similar performance
between high and low-order schemes, at least if only aerodynamics are con-
sidered. The acoustic spectrum obtained by using low-accuracy methods
differs slightly more than the one obtained by using high-accuracy methods.
Nonetheless, these differences are bound to be inferior to 3 dB and at the most
challenging observer angles.
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1

Introduction

Abstract. In this introductory chapter, we explain why scientists became
more interested in problems involving both the production and transport of
sound, commonly noise. Then, the different approaches that investigators
could use to study sound propagation will be described. During this descrip-
tion, the problems that emerge during these studies will naturally come up, so
they will be detailed, as well as how the mitigation or, on the other hand, their
presence affects the quality and validity of the obtained results. Finally, the
main conclusions of this first chapter will be presented justifying the need for
the present thesis and similar studies to understand better the different roles
of several elements involved in noise simulation problems, and how these
elements ultimately affect the obtained results.

1.1 Noise: why?

Humanity wants to be comfortable. This is not only because a comfortable
situation is more desirable than an uncomfortable one but also because dis-
comfort could eventually generate a health problem. This problem may not
appear immediately, but its effects surging due to a very long exposition or
appearing all of a sudden due to a very intense exposition. For this reason,
every situation which involves some degree of discomfort should be stud-
ied to analyze how this discomfort has arisen and, if possible, how it can be
mitigated or avoided.

Inside the most common sources of peoples’ discomfort, we find noise.
From a physical point of view, there is no difference between sound and noise
as both are mechanical vibrations traveling through a continuum medium;

1



2 §1.1 Noise: why?

it is psychology that makes the difference between wanted and unwanted
sound, i.e., noise. Therefore, noise is defined as an unwanted sound that is
unpleasant and usually louder than its wanted counterpart.

1.1.1 Effects on the human body

As has been previously said, noise “loudness” is usually the primary source
of discomfort and the one that can affect the health of the people exposed.

140 dB is defined as the pain threshold at which the sound becomes painful
to hear. An example of such noise level is the jet engine at take-off for a close
observer located at approximately 30 m. If the observer were just 1 meter from
the engine, the level would rise to 150 dB instead. It is not necessary to achieve
such noise levels to induce instantaneous hearing loss, as noise levels around
120 dB can provoke it. Examples of these levels are diverse and can be found
in a pop/rock concert or produced by a two-stroke chainsaw. However, long
exposures to smaller levels can still induce hearing loss.

For a typical workday, i.e., 8-hour average, the recommended exposure lev-
els should be below 85 dB(A) [1]. If this exposure was continuous throughout
the whole period, the noise levels should be lowered to 70 dB(A) instead.

Finally, hearing loss is not the only consequence on hearing that noise can
cause. Noise can also cause tinnitus, a noise perceived as ringing, buzzing, or
roaring when external noise production is not present. This may be caused by
a single and strong exposure or by a continuous and more attenuated one.

Hearing risks are not the only concern regarding noise, as it has effects on
other aspects of health and daily life. Noise is one of the main causes of stress.
Non-hazardous noise levels can still be problematic if they cause the listener to
be tense. For example, a non-understandable and continuous mumble during
work hours. This noise is, of course, non-damaging as it is extremely low but
can cause concentration problems and even the impossibility of executing a
task correctly. Linked with this, there is a correlation between noise pollution
and cardiovascular disease, as environmental noise can increase the risk of
high blood pressure levels and the incidence of arterial hypertension, heart
failure, and stroke due to increased stress levels [2].

Recent investigations are linking the apparition of dementia and Alzheimer’s
disease with hearing loss [3]. Sleep quality is highly affected by the presence
of noise. It does not require an excessively high sound, but just enough to
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become a nuisance. Furthermore, noise does not require waking you up or
making it impossible to sleep in order to have detrimental effects. The brain
still processes and registers sound while sleeping, leading to a worsening in
sleep quality.

1.1.2 Aerodynamic noise

Noise is generated by very different mechanisms. Taking, for example, a car,
it can be distinguished between the noise generated by the friction between
the wheels and the road or the noise generated by the air flowing through
the air conditioning systems [4]. Among all the noise generation mechanisms,
aerodynamic noise is the one we want to put focus on during this thesis. Aero-
dynamic noise refers to the sound generated by an unsteady flow, generally
turbulent. This generation is produced via two different mechanisms:

• The interaction of aerodynamic forces with solid surfaces. Examples
of this kind of noise generation include propellers, rotorcraft, landing
gears, airplane fuselage...

• The fluid turbulent motion itself. Examples of this kind of noise genera-
tion mechanism are free shear layer problems, such as immersed jets, or
sudden expansions like backward-facing step configurations.

Intuitively, it is easy to understand that the aerodynamic noise is generated by
a fluid in motion. The higher the motion, i.e., velocity, the higher the noise.
Therefore, this kind of noise is usually associated with high-speed flows.

Previously, it has been shown as an example of two different noise mecha-
nisms in a car. More precisely, of an exterior noise generation mechanism -tire
noise- and an interior one -air conditioning system noise. Regarding exterior
sound mechanisms, tire noise is the predominant noise generation mechanism
at low speeds, i.e., cities. However, aerodynamic noise becomes the predomi-
nant sound mechanism on highways where the car achieves velocities around
100-120 km/h.

Cars are not the only transport where aerodynamic noise has become a
problem; trains also face a very similar situation. While the friction between
the rail and the wheels of the train is the predominant noise generator at low
speeds, the pantograph becomes the predominant noise generator at higher
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Figure 1.1: Most relevant noise sources on-board of conventional mid-range transport
aircraft. Credits to Henri Siller and Jan Delfs, DLR, 2019

velocities [5, 6]. Additionally, at very high-speed regimes achieved by bullet
trains, the whole wagon becomes a noise generator [5, 7].

Still with transport systems, commercial aviation has been dealing with
noise comfort since its apparition at the end of WW2. Unlike than during
the years prior, when airplane noise was not seen as a problem and more
as an intimidating strategy, commercial aviation wants quite the opposite:
the quietest the airplane, the better. In high altitudes, predominant noise
generators are located on the whole fuselage and the engine, which can be
annoying for passengers and crew members. People living near airports
also suffer from noise emitted by airplanes, especially during taking-off and
landing, when noise is mainly generated by the jet flow exiting the engine. In
Figure 1.1, the most relevant noise sources in the typical configuration of a
mid-range airplane are included.

Finally, also within transport systems but not related to vehicles in motion,
climatization systems are known to be a noise source. Even though the sound
power levels of these systems are usually low, their constant presence can be
annoying.
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1.2 How turbulent noise is studied?

As has been previously said, noise is an issue which can evolve into an even-
tual health problem. Therefore, it should be studied to establish how it is
produced. At the same time, understanding the noise production mechanisms
will lead to improved designs that reduce or minimize the radiated sound.

The first and most straightforward option to study noise is to measure
it directly. In other words, use an experiment facility at which the noise
production conditions are replicated in order to obtain a direct measure of the
noise. However, such an option is not always the best approach for various
reasons.

First, it requires the physical noise generator object which needs to be
analyzed. In the prototyping stage, this approach is not cheap as if several
geometries or designs are being considered, all these designs should be manu-
factured, with their corresponding manufacturing cost, and then studied.

Second, the facilities used to obtain noise measures have strict require-
ments to not influence the results [8]. Sound has a vast influence domain, i.e.,
noise decays slowly compared to turbulence, and, additionally, it bounces in
the walls. This means that a returning sound wave could interact with an
outgoing wave, distorting the results. Therefore, facilities with walls that are
very far from the observation point of interest or alternatively, or even better,
in conjunction with absorbing noise walls should be used. In other words,
massive facilities or anechoic chambers, like the one in Figure 1.2, should be
used.

The second option relies on simulation. Instead of reproducing the problem
in the real world, the numerical simulation reproduces and studies it in a
computer. This avoids the costs of manufacturing several options under study
as their geometry, usually a CAD file or equivalent, is the required input.
Moreover, there is no need to use huge facilities or anechoic chambers to avoid
undesired wall effects such as sound wave bouncing. This problem is easily
solved by imposing a specific boundary condition to avoid a reflection back to
the domain. This approach is what is called Computational AeroAcoustics.



6 §1.2 How turbulent noise is studied?

Figure 1.2: Anechoic chamber in UCI Aeroacoustics Lab. Credits to Dimitri Pa-
pamoschou, UCI, 2022

1.2.1 Computational AeroAcoustics: definition

Computational AeroAcoustics (CAA) is a subbranch of both acoustics and
turbulence whose objective is to analyze the noise generated by a turbulent
fluid via numerical methods. As the available computational resources have
increased in recent years, this has allowed a simulation-based approach for
aeroacoustics possible. As the possibility of studying real-life problems where
noise plays a relevant role is becoming a reality, Computational Fluid Dy-
namics (CFD) researchers have put their focus on studying turbulent-induced
noise.

As CAA is relatively a new-born area, there is still not a clear winner
between all the different approaches that exist; each procedure has its cons
and pros, making it more suited for a case but producing awful results in
others. The first big division between CAA methods comes from how noise is
computed.
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1.2.2 Direct methods

The first and probably the most straightforward methodology to understand
are the direct methods. These methods take the fully compressible set of
Navier-Stokes (NS) equations and solve it directly, as noise generation and
propagation are included implicitly in the set of equations [9].

So, by just simulating NS equations, it is possible to study noise-related
problems without any modelization or approximation of how noise is pro-
duced and transported. Turbulence models, luckily, can be used in this kind of
approach and are still considered direct methods. These kinds of simulations
require domains as large as the distance between where the noise is produced
and where the noise is wanted to be analyzed, i.e., an observer or several
observer positions. Compared with CFD, direct methods can be seen as a kind
of Direct Numerical Simulations (DNS) applied to acoustics, and as happens
with DNS, not everything is positive.

The first issue is that direct methods require a considerable amount of
computational resources, mainly due to two reasons: domain size and multi-
scale. As has been previously commented, direct methods require very large
domains, which translates into discrete domains larger than those treated by
CFD. Aeroacoustics is, additionally, a multiscale problem. This means that the
scales of acoustics and hydrodynamics vary by several orders of magnitude.
In other words, in the region where noise is produced, hydrodynamic forces
are thousands of times stronger than acoustic waves, which can be easily
hidden by the numerical errors of the former.

The second problem is that even though both CFD and CAA seem to
have a lot in common, some of the best methodologies that work on CFD are
not precise enough to work on CAA. For example, the second-order scheme
is one of the most used schemes in CFD for the advective term. However,
when dealing with acoustics, low-order schemes are usually insufficient to
consistently simulate acoustic waves as these are dampened or distorted due
to high amounts of diffusion and dispersion [10]. Nonetheless, there is a
solution to circumvent this problem and still use the same schemes as the CFD
community: reduce the mesh sizes so both numerical errors, which depend on
the local mesh resolution, become negligible. However, it is easy to see how
this solution will affect the first issue commented: mesh will increase its size
dramatically.



8 §1.2 How turbulent noise is studied?

1.2.3 Hybrid approaches

The other option consists of the so-called hybrid approaches. This kind of
approach decouples the problem into noise generation and noise propagation.
The CFD solver handles the first part as noise is generated due to the interac-
tion between aerodynamic forces and turbulence. Noise propagation to the
far-field, i.e., the region in space where only acoustics plays a relevant role as
turbulence is negligible and the fluid has practically non-movement, is han-
dled by the acoustic solver or post-processor. In summary, hybrid approaches
decouple noise problems into two different problems: how noise is generated
and how noise is transported.

Regarding how noise sources are computed, we can distinguish between
two different methodologies to obtain acoustic sources:

• Resolved sources, which are constructed using hydrodynamic variables
extracted directly from the fluid, mainly density, velocity, and pressure.
This requires as input the transient information from the CFD solver,
restricting the CFD simulation to a DNS, an LES, or a DES.

• Reconstructed sources, which are modeled semi-empirically after some
turbulent information extracted from the CFD simulation. The accuracy
and reliability of these kinds of methods depend on how those semi-
empirical sources had been constructed. Moreover, unlike with resolved
ones, reconstructed sources do not require a transient input, making it
possible to use RANS in the CFD simulation [11].

Again, there is no unique methodology for noise transport, but two differ-
ent approaches can be distinguished:

• Analytical transport methods, in which the wave equation is used in an
integrated form, such as Lighthill’s equation [12], Kirchhoff’s surface
integral, or Ffowcs-Williams Hawkings equation [13]. These methods
compute acoustic sources along a region of the space, being it a volume
or a surface, and then, through the sound speed, the noise generated by
these sources is extrapolated to the observer location points. Finally, the
full acoustic signal is obtained by summing the noise obtained from all
the sources.
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• Numerical transport methods, in which the partial differential equation
under study is discretized and solved numerically. In this sense, these
methods are very similar to a conventional CFD simulation, as both
take the same approach: discretize and solve numerically a PDE or a
system of PDEs. They differ from the acoustic direct approach in the
sense that these methods do not simulate the same set of equations.
For example, among the more common approaches, there are the Eu-
ler Equations or their linearized form (LEE), which are used to avoid
instability issues arising from the lack of diffusivity. Alternatively, more
accurate approaches, such as Linearized Acoustic Perturbation Equa-
tions (LPCE) [14] or Acoustic Perturbed Equations (APE) [15] systems,
with different application areas for each one. Finally, as the system
of equations to solve is different from the NS equations solved by the
CFD solver, specifically tuned schemes with low dispersion and diffu-
sion properties can be used. This allows using the best approach for
each problem. Nonetheless, they share a common problem with direct
methods as domains require to be larger enough to cover the distance
between the generation region and the observation point under interest.

1.3 Open areas in CAA

Computational AeroAcoustics has not yet achieved a level of maturity that can
be considered a fully closed discipline. As numerically simulating the fluid
is required in order to study its noise spectra in CAA. Basically, all the open
areas in CFD affect, to one degree or another, the quality and validity of the
CAA results. Furthermore, to add more complication, CAA deals with a multi-
scale problem. This means that the amplitudes of hydrodynamic oscillations
and acoustic waves have different orders of magnitude. In other words, it is
easy for the acoustic wave to be entirelly swallowed by the hydrodynamic
oscillation errors.

Acoustic waves are characterized by their amplitude, frequency, and the
speed at which they travel. If several of these acoustic waves interact between
them, they produce a resulting noise. As waves can be both destructive and
constructive depending on the phase they have between them, it is possible
for two waves to produce a more energetic wave or result in a null wave, i.e.,
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a wave with zero amplitude. So, it is of paramount importance to achieve
good numerical resolution of both amplitude and speed of acoustic waves as,
otherwise, the interaction between them will not be correct. In other words:

• If the amplitude of one considered wave is smaller than it should be,
the result of interacting with another wave, with or without the correct
amplitude, will not be correct. More precisely, the amplitude of the
resulting wave will not be correct.

• But if the velocity of the acoustic wave is not well computed, this has
more implications. If two waves with incorrect phases between them,
due to a mismatch between propagation velocities, interact, both the
phase and the amplitude of the resulting wave will not be correct.

Independently of the procedure used to compute aerodynamic noise, except
in the case of spectral methods, they all share the fact that a numerical ap-
proximation of the derivative is required. Therefore, numerical schemes have
to be used. These schemes affect the accuracy of both the amplitude and the
velocity of the resulting acoustic waves. And, as a rule of thumb, the higher
the accuracy or order of the used scheme, the lower the error committed in
both amplitude and velocity of propagation.

1.3.1 Dispersion and diffusion

Numerical approximation of the derivatives induces two kinds of errors, or
three if a non-linear field, such as the product of two fields, is derived. These
errors are:

• Diffusion error.

• Dispersion error.

• Aliasing error.

We want to put our focus on the two first, as even though Navier-Stokes
equations present the derivative of a non-linear field, the usual approach in
acoustics is analyzing diffusion and dispersion only. This happens due to,
usually, acoustic problems being linear.
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Diffusion error

The numerical diffusion error is the phenomenon observed in numerical
simulations where the simulated medium exhibits a higher diffusivity than its
real counterpart.

Its appearance can be both positive and negative. For example, if a high-
fidelity simulation is performed, numerical diffusion can cause the obtained
results to not be enough as they do not resemble what occurs in reality. How-
ever, on the other hand, numerical simulations also deal with stability. Adding
some artificial viscosity can lead to converging simulations, whereas the lack
of it could be the reason behind a diverging simulation. For example, if shock
waves are considered, the numerical simulation has to be able to compute
an extremely thin wave, i.e., a field gradient extremely high. Therefore, in
order to stabilize the simulation, it is recommended to add some diffusion, as
otherwise, it would blow up.

It is relatively easy to see how diffusion error is introduced. The derivative
operator is known to be skew-symmetric. In other words, it makes the next
relation true:

< ϕ, Cψ >= − < Cϕ, ψ >, (1.1)

where C is the derivative operator. Therefore, in order to mimic the previous
property, skew-symmetric schemes should be used [16,17]. In the case that the
numerical scheme has a symmetric component, such as the family of upwind
schemes, among others, this will introduce some numerical diffusion to the
simulation.

Dispersion error

The definition of numerical dispersion error is quite similar to numerical
diffusion. The numerical dispersion error is the phenomenon observed in
numerical simulations where the simulated medium exhibits a higher disper-
sivity than its real counterpart. However, its effects are not so clear.

Taking, for example, a linear first-order wave propagation equation in 1D:

∂ϕ

∂t
+ c

∂ϕ

∂x
= 0, (1.2)

where c is a constant wave velocity propagation. The previous equation
follows a linear dispersion relation between the angular frequency and the
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wavenumber equal to:
ω = ck. (1.3)

The previous means that both phase velocity cp and group velocity cg are the
same as

cp = ω/k = c, (1.4)

and
cg(k) =

∂ω

∂k
= c. (1.5)

However, the previous does not hold when a discrete differential scheme
is used. In this case, the relation between the angular frequency and the
wavenumber is equal to:

ω = ck̂(k), (1.6)

where k̂(k) is the numerical wavenumber as a function of the analytical one.
This means that the group velocity now is:

cg(k) =
∂ω

∂k
=

∂ω

∂k̂(k)
· ∂k̂(k)

∂k
= c · ∂k̂(k)

∂k
. (1.7)

What does the previous equation mean? Equation 1.5 shows that all the dif-
ferent wave components have the same speed. However, Equation 1.7 shows
that, unless the numerical wavenumber is equal to the analytical one, the
different components each have a different propagation speed, even though
they must have the same one.

Spectral approach of diffusion and dispersion

The previous introductions to diffusion and dispersion error can be seen as a
“physical” approach to understanding them. However, it is possible to take an
entirely mathematical approach and still be able to explain how these errors
appear [10, 18].

First, let us assume a numerical discretization of the first derivative in a
structured and uniform distribution of nodes:

∂ϕ

∂x
≃ 1

∆x

N

∑
j=−N

ajϕ(x + j∆x). (1.8)
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Then, the Fourier Transform of each side of the equation is performed. Being
the left-hand side equal to:

FT
(

∂ϕ

∂x

)
= ikϕ̂(k), (1.9)

and the right-hand side is equal to:

FT

(
1

∆x

N

∑
j=−N

ajϕj

)
=

1
∆x

[
N

∑
j=−N

ajeijk∆x

]
ϕ̂(k). (1.10)

Then, equating both terms again:

ikϕ̂(k) ≃ 1
∆x

[
N

∑
j=−N

ajeijk∆x

]
ϕ̂(k). (1.11)

The right-hand side can be rewritten in a form such as becomes more similar
to the left-hand side. For example:

1
∆x

[
N

∑
j=−N

ajeijk∆x

]
ϕ̂(k) = ik̄ϕ̂(k). (1.12)

Therefore, there is a relation between the analytical wavenumber k and the
numerical one k̄:

k̄ =
−i
∆x

[
N

∑
j=−N

ajeijk∆x

]
. (1.13)

As can be seen in Equation 1.13, the numerical wavenumber k̄ is a complex
number. However, the analytical wavenumber is a real number. Or the same:
a complex number with a null imaginary part. The only possibility for the
numerical wavenumber to have a non-zero imaginary part is that the weights
of the selected numerical scheme, i.e the aj terms in the previous equations, are
not purely skew-symmetric. In other words, using skew-symmetric schemes
avoids having a numerical wavenumber with a complex component. How-
ever, using skew-symmetric schemes when approximating the derivative was
also the reason to avoid introducing numerical diffusion. Therefore, if the nu-
merical wavenumber has an imaginary component, this indicates the presence
of numerical diffusion error.
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Finally, it is also easy to link the numerical wavenumber with the disper-
sion error. Assuming a skew-symmetric scheme has been used, in order to
simplify the discussion, the numerical wavenumber expression 1.13 can be
further reduced to:

k̄ =
2

∆x

[
N

∑
j=1

ajsin(jk∆x)

]
. (1.14)

For example, for the well-known second-order symmetry-preserving scheme
where a1 = −a−1 = 1

2 , the Equation 1.14 reduces to:

k̄ =
sin(k∆x)

∆x
. (1.15)

So, what is dispersion error? It is a mismatch between the numerical wavenum-
ber and the exact wavenumber. And, unlike the diffusion error, numerical
dispersion error cannot be avoided by any means except when spectral meth-
ods are used. This is explained by Equation 1.14, as the relation between the
numerical and the analytical wavenumber will always be expressed by means
of a non-linear relation involving sinusoids, which will never be equal to unity.

Example

Let us reproduce Tam’s [19] example and one of the easiest problems in acous-
tics, or linear wave propagation in general: a one-dimensional pulse propa-
gation. Assuming a constant convection velocity of 1 and a finite difference
approximation of the derivative, Equation 1.2 can be rewritten as:

∂ϕ

∂t
+

N

∑
j=−N

ajϕj = 0. (1.16)

Where aj are the weights of the selected numerical scheme, and N denotes
the position of the nodes in this scheme. As an initial condition, a Gaussian
profile will be used:

ϕ(x, t = 0) = 0.5exp
[
−ln2

( x
3

)2
]

. (1.17)
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As Equation 1.2 does not consider any kind of dissipative behavior but only
pure convection, the exact result of convecting the previous Gaussian profile
should be a displacement of the initial pulse without changing its shape, i.e:

ϕ(x, t) = 0.5exp

[
−ln2

(
x − ct

3

)2
]

. (1.18)

However, let’s see what happens when different numerical schemes are used
and how the numerical solution approximates to the exact solution. For this
example, we consider four different schemes: the first-order upwind scheme,
the second-order central scheme, the sixth-order central scheme, and the DRP4
scheme.
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Figure 1.3: Obtained profiles of the initial Gaussian impulse at times t=0 and t=500.
From top to bottom: first-order upwind scheme, second-order central scheme, sixth-
order central scheme, and DRP4 scheme
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As can be seen in Figure 1.3, using a dissipative scheme (Figure 1.3, top)
leads to a highly diffused solution that differs significantly from the expected
solution. However, even if non-dissipative schemes are used, the numerical
solution can be very different from the expected analytical one as the shape
is no longer attenuated but heavily distorted. This phenomenon is explained
by the dispersion error introduced by the numerical scheme, which leads to a
group of waves traveling at different wave speeds instead of a single one. As
can be seen, raising the order of the numerical scheme leads to a reduction of
the dispersion error, which, therefore, preserves the shape of the numerical
solution.

1.3.2 Turbulence modelling

Due to its inherent high non-linearity, there are just a few analytical solutions
for the Navier-Stokes equations. Problems that are, apparently, geometrically
simple, such as a squared cavity with a fluid circulating or a simple squared
cylinder immersed within a fluid in movement, can pose a challenging prob-
lem to be studied. This callenge becomes more apparent if we consider more
complex geometries like the ones the industry has to deal with, such as flow
around aerodynamic shapes like cars and planes. The way how the scientists
and engineers have dealt with these kinds of problems has been relying on
numerical simulations. Nonetheless, even with the astonishing growth in the
available computational resources during the last decades, there are still prob-
lems at very high Reynolds number that cannot be afforded to be solved. This
occurs due to the non-linearity of the convective term of the Navier-Stokes
equations, which acts as a generator of modes or frequencies. This mechanism
is explained by Kolmogorov on how the kinetic energy is transferred between
scales:

• Energy-containing scales, where the energy is introduced to the system.
This can be further divided into:

– Large scales, or the scales defined by geometry.

– Integral scales, or the scales that have more kinetic energy.

• Inertial subrange, a range of scales where the energy introduced to the
system is transferred to smaller scales. This energy transfer mechanism
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Figure 1.4: Turbulent kinetic energy wavenumber spectrum. Extracted from [20]

is replicated in a self-similar way, i.e., the kinetic energy is transferred
again from small scales to smaller ones and then again and again...

• Dissipation scales or Kolmogorov scales, where the kinetic energy iscon-
verted to thermal energy due to friction by means of viscous effects.

Figure 1.4 briefly summarises the whole energy cascade mechanism.
In summary, the problem of raising the Reynolds number can be seen as a

problem where the Kolmogorov scales become smaller and smaller. And these
scales should be correctly simulated when solving the Navier-Stokes equations
numerically. In other words, the numerical simulation should precisely be
able to reproduce the entire energy cascade mechanism. However, in order
to avoid increasing the mesh to capture these scales of motion and how they
interact with the bigger ones, there is an alternative. Instead of having such a
fine mesh that can capture the smallest eddies, have a numerical model that
reproduces the effect of these smallest scales and how they interact with the
bigger scales of motion without having to simulate them. This is the key idea
behind turbulence modeling.

Here, we will discuss only three different turbulence modeling techniques:
Reynolds-Averaged Navier-Stokes (RANS), Large-Eddy Simulation (LES), and
Detached-Eddy Simulation (DES).
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Reynolds-Averaged Navier-Stokes (RANS)

RANS models are based on decoupling each field as a combination of a mean-
flow component and a temporal fluctuation, i.e., Reynolds decomposition. If
we apply this decomposition to the i component of the velocity, we have:

ui(x, y, z, t) = ui(x, y, z) + u′
i(x, y, z, t), (1.19)

where ui denotes the averaged velocity in time, and u′
i its time fluctuation. If

this decomposition is repeated again:

ui = ui + u′
i = ui + �

���
0

u′
i = ui, (1.20)

so the equality is fulfilled.
If the Reynolds decomposition is applied to the incompressible continuity

equation, this becomes:

∂

∂xi
(ui + u′

i) = 0

∂

∂xi
ui +

�
�

���
0

∂

∂xi
u′

i = 0

∂ui

∂xi
= 0,

(1.21)

which, apparently, reads identical to the non-filtered version. Nonetheless,
the reader should be careful with this statement, as the filtered version in
expression 1.21 only considers the mean component of the velocity, whereas
the non-filtered version considers all the possible velocity fluctuations.

If this procedure is repeated again with the momentum equation:

∂

∂t
(ui + u′

i) + (uj + u′
j)

∂

∂xj
(ui + u′

i) =
∂(p + p′)

∂xi
+ ν

∂2

∂xj
(ui + u′

i)

∂ui

∂t
+ uj

∂ui

∂xj
+ u′

j
∂u′

i
∂xj

=
∂p
∂xi

+ ν
∂2ui

∂xj

∂ui

∂t
+ uj

∂ui

∂xj
+ u′

j
∂u′

i
∂xj

=
∂p
∂xi

+ ν
∂2ui

∂xj
,

(1.22)
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where we have omitted the intermediate step, in which the zero terms are
removed. If the expression 1.22 is rearranged such as follows the non-filtered
version of the Navier-Stokes equations, it can be seen that an extra term has
appeared:

∂ui

∂t
++uj

∂ui

∂xj
=

∂p
∂xi

+ ν
∂2ui

∂xj
+

∂

∂xj
(u′

ju
′
i). (1.23)

The last term in the equation, ∂
∂xj

(u′
ju

′
i), is an extra term called the Reynolds

stresses. This term appeared due to the non-linearity of the convective oper-
ator, representing the interaction between fluctuations. This means that we
have more unknowns than equations; therefore, the system is not closed. A
RANS model aims to offer a closure for the system of equations, i.e., compute
the Reynolds stresses. In the literature we can find several options, being the
most used the ones based on the Boussinesq approximation or linear eddy
viscosity models. They are called ”linear” as the Reynolds stresses are modeled
using a linear relation with the mean flow:

u′
ju

′
i = 2νtSij −

2
3

kδij, (1.24)

where

Sij =
1
2

[
∂uj

∂xi
+

∂ui

∂xj

]
− ∂uk

∂xk
δij (1.25)

is the mean rate of strain tensor, and

k =
1
2

u′
ku′

k (1.26)

the mean turbulent kinetic energy, i.e., the trace of the Reynolds stress tensor.
As can be seen, a new variable, νt, appeared in expression 1.24. This is the
so-called eddy viscosity, or turbulent eddy viscosity, due to the parallelism it
has with the molecular viscosity.

However, there are still more unknowns than equations. Depending on
how many variables are modeled, the RANS models can be classified as zero
(or algebraic), one or two equations models.
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Large-Eddy Simulation (LES)

One of the big issues regarding RANS models is their inability to capture
transient phenomena. There are options within RANS, such as URANS, which
stands for Unsteady RANS, that are able to work with unsteadiness. However,
from a mathematical point of view, it is strange to apply a method that defines
a mean flow variable, i.e., a variable that does not depend on time as in
expression 1.19, but then allows this variable to vary on time.

Large Eddy Simulation takes a similar but different approach than RANS:
LES is based on a spatial average instead of averaging variables on time. So,
in a similar fashion to equation 1.19, the i component of the velocity can be
decomposed into:

ui = ũi + u′′
i , (1.27)

where ũi is the spatially filtered velocity and u′′
i is the spatial subfiltered

velocity. Looking at Figure 1.4, this filtering process means that the filtered
velocity, ũi, is able to capture all the frequencies up to a certain frequency
located within the inertial subrange. Therefore, all the frequencies above this
cut-off frequency are included within u′′

i . In other words, u′′
i represents all the

scales of motion that are too small to be resolved.
Following the same procedure as with RANS modeling, if LES filtering is

applied, the momentum equation:

∂u
∂t

:
+ uj

∂ui

∂xj

:
=

∂p
∂xi

:
+ ν

∂2ui

∂xj

:

∂ũi

∂t
+

∂ũiuj

∂xj
=

∂ p̃
∂xi

+ ν
∂2ũi

∂xj

∂ũi

∂t
+

∂ũiũj

∂xj
− ∂ũiũj

∂xj
+

∂ũiuj

∂xj
=

∂ p̃
∂xi

+ ν
∂2ũi

∂xj

∂ũi

∂t
+

∂ũiũj

∂xj
=

∂ p̃
∂xi

+ ν
∂2ũi

∂xj
− ∂

∂xj
(ũiuj − ũiũj),

(1.28)

where ũiuj − ũiũj is equal to the residual stress tensor, or subgrid stress
tensor τij. This subgrid stress tensor can be further decomposed into three
different components [21]:
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τij = Lij + Cij + Rij, (1.29)

where
Lij = ũiũj

: − ũiũj, (1.30)

the Leonard tensor represents the interactions among the large scales,

Cij = ũiu′′
j

:
− u′′

i ũj
:

, (1.31)

the Clark tensor, representing the interaction between resolved (large) and
subgrid scales, and

Rij = u′′
i u′′

j
:

, (1.32)

the Reynolds stress tensor, representing the interaction among subgrid scales.
Nonetheless, even though having them separated and showing explicitly

the different interactions among scales, the usual approach is to model them
as a whole, i.e., model only τij instead of Lij, Cij, and Rij.

Among the different existing approaches to model τij, functional or eddy
viscosity models, the ones used in this work, are based on adding an artificial
eddy viscosity. These eddy viscosity models treat the kinetic energy dissipa-
tion in the subgrid scales analogously to the molecular dissipation. Therefore,
the filtered Navier-Stokes equations can finally be written as:

∂ũi

∂t
+

∂ũiũj

∂xj
=

∂ p̃
∂xi

+
∂

∂xj
((ν + νturb)

∂ũi

∂xj
), (1.33)

where νturb is the eddy viscosity and the one modeled by the subgrid-scale
model.

Finally, the usual approach to model the eddy viscosity within functional
models is to express it as a product between a characteristic length, a char-
acteristic velocity, and a constant calibrated such that the amount of added
diffusion is correct. In other words:

νturb = (CLES∆SGS)
2DLES. (1.34)

Formally, what is known as the turbulence model is only referred to the
calculus of DLES. In the literature can be found a large variety of turbulence
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models, ranging from the simplest one, i.e., Smagorinsky, to models that take
into account the flow topology, such as WALE [22] or σ [23].

Whereas a lot of effort has been dedicated to producing more reliable
turbulence models, making them sensitive to two-dimensional patterns, ∆SGS
has been, for a long time, the one forgotten; usually, this subgrid scale length
has been computed as the cubic root of the volume, i.e., ∆vol = Vol1/3, as
it is simple and cheap to compute. Nonetheless, in recent years, the CFD
community has started to become more interested in developing advanced
subgrid scales that, as with the turbulence model, are able to take into account
the different flow topologies when they are computed. Within these new ones,
we can find ∆̃ω [24], ∆SLA [25], or ∆lsq [26], each one having produced more
accurate results and being less mesh sensitive than ∆vol .

Detached Eddy Simulation

LES tries to overcome RANS issues, such as its inability to capture transient
phenomena or the lack of accuracy of specific RANS models when applied to
flows exhibiting separation. Nonetheless, this comes with an increase in the
computational effort needed to run a simulation, as LES meshes are required
to be finer than their RANS counterpart. Therefore, even though LES is able
to cover the main issues with RANS models, the problem is still not solved;
there is not a clear winner, so some applications will still be using RANS while
others will be incorporating LES as soon as the available computational power
allows it.

Nonetheless, despite the considerable increase in computational resources
in these last decades, pure LES simulations for general industrial applications
are still many years to go. In these transition years, from RANS to LES,
hybrid methods significantly boost the quality of the numerical results, when
compared to RANS, without requiring the computational effort of a pure LES
simulation.

Detached Eddy Simulation (DES) [27] is one of the available hybrid RANS-
LES methods available. DES offers a single turbulence model that behaves
as an LES where the grid is fine enough, whereas, in regions where the grid
is too coarse to act as a subgrid-scale model, the model functions as a RANS
model instead. In other words, near walls or shear-layers DES will behave like
RANS, whereas the model will behave as an LES in those regions where the
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flow detaches. DES is considered a non-zonal hybrid method, in the sense that
a single turbulence model is used instead of explicitly using a RANS model in
a region of the simulated domain and a separate LES model in the rest of the
mesh. From a formal aspect, the only difference between a RANS model and
its DES counterpart is the definition of LRANS, a length scale present within
the RANS model. DES modify this LRANS to:

LDES = min(LRANS, CDES∆), (1.35)

where CDES is the DES model constant, similar to the CLES in equation 1.34,
and ∆ follows the same definition as in an LES model, i.e., a measure from the
local grid size or local characteristic length.

However, at least in its first iteration, DES was not exempt from issues.
Among others:

• If the interface between RANS and LES is located within the boundary
layer, i.e., the mesh is too fine for DES to work as expected but too coarse
to fully resolve turbulent structures, this causes the DES model to behave
like LES prematurely. In other words, LES is entering the boundary layer
whilst it should not. This triggers a sooner transition to fully resolved
turbulence than expected. For this reason, this problem is also known
as Grid-Induced Separation: a too-refined mesh generates a turbulence
triggering sooner than it should have appeared.

• When the model transitions from RANS to LES, it changes from model-
ing turbulence to resolving it; the region where this occurs is known as
the Gray Area. During this transition, the model behaves as a mixture
between RANS and LES, but at the same time, it is none of them: it
does not have enough modeled turbulence to be considered RANS nor
enough resolved turbulence to be considered LES. So, the transition from
RANS to LES behaves like a kind of laminar to turbulent transition. The
main issue is that this laminar-turbulent happens in a region of the space
where the fluid should be totally turbulent. So, there is a delay in the
development of fully resolved turbulence within the domain.

As can be seen, the first problem is that turbulence is triggered sooner than
expected, whereas the second problem is a delay in triggering thurbulence.
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Regarding Grid-Induced Separation, later DES revisions have fixed this
issue or reduced its effects. The most used approach is the so-called Delayed
DES (DDES) [28], as this approach delays the mode switch between RANS and
LES until it is located outside the boundary layer. This approach included the
so-called shielding function, fd, which modified equation 1.35 to:

LDDES = LRANS − fdmax(LRANS − ΨCDDES∆, 0). (1.36)

The new variable Ψ is a correction function published in the same paper
where the shielding is presented. The inclusion of Ψ avoids erroneous or
unwanted RANS model dampings near walls in LES mode.

However, the Gray Area problem is still an open issue which is addressed
by Gray Area Mitigation (GAM) techniques. As the formal definition for the
turbulent viscosity is the one used in 1.34, it can be seen that turbulence can
be triggered by decreasing νt, accelerating the RANS to LES transition. This
can be achieved by two different paths: reducing ∆ or reducing DLES. As
commented previously in the LES section, new ∆ definitions, such as ∆̃ω,
∆SLA, or ∆lsq are able to contribute to the GAM by producing reduced values
of ∆. At the same time, advanced turbulence models like the ones previously
mentioned (σ, WALE, S3PQR,...) can also reduce νt values.

1.4 Objective of the thesis

Traditionally, Computational AeroAcoustics has relied on using high-order
methods to obtain reliable results. The classical approach of Tam, presented
in this introduction, shows a clear dependence of the numerical wavenum-
ber on the order of the numerical scheme. High numerical methods have a
broader range of wavenumbers where the difference between the numerical
and analytical wavenumbers is small enough not to affect the outcome of
the simulation. Nonetheless, low-order methods are a more straightforward,
direct, and easy approach to ensure the symmetries of the discretized opera-
tors are kept in a general framework. This implies, for example, considering
different kinds of discrete domains and not only structured uniform meshing
approaches.
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This presents a dilemma: what is more important? Do we need to use high-
order methods so that the numerical dispersion error is kept at a minimum?
Or use low-order methods, such that the symmetries of the discretized opera-
tors are ensured instead? However, there are still other questions apart from
the previous ones: Is it correct to use the conclusions extracted from a method
applied to evenly distributed domains when using non-uniform meshes as an
argument that favours high-order schemes? Do low-order schemes behave so
poorly compared to high-order schemes when using non-uniform meshing
strategies?

Nonetheless, in real-world scenarios, where the Reynolds number is too
high to consider a DNS, the effect of the turbulence modelling on the acoustic
results should also be taken into account. As previously stated, DES presents
an alternative methodology to standard LES models that can be used during
the transition period until a fully LES simulation can be performed on a daily
basis. Nonetheless, DES is not exempt from problems: the unphysical delay
from the RANS mode to the LES mode generates numerical oscillations which
cannot be distinguished from the acoustic waves. Are the standard DES
approaches based on ∆Vol , Smagorinsky, and Spalart-Allmaras good enough to
provide accurate acoustic results? Or is it necessary to use more advanced
features, such as dynamically adapting subgrid length-scales, to suppress the
generation of unphysical oscillations entirely? Is the order of the numerical
scheme so important when turbulence modelling is added to the equation?

This work aims to answer the previous questions at all the possible levels.
First, by analyzing the differences between high and low-order methods using
an extended mathematical analysis, parting from Tam’s one. And second, by
comparing the acoustic and hydrodynamic results of the subsonic turbulent
round jet obtained from two different numerical algorithms: OpenFOAM, an
open-source low-order software, and NOISEtte, an in-house high-order code.
By considering a turbulent case, such as the one in this work, and forcing the
usage of some turbulence modelling approach, we can analyze the effect that
this selection has on the obtained hydrodynamic and acoustic results.

We believe that this thesis significantly contributes to explaining whether
low-order schemes can be a viable option for the Computational AeroAcous-
tics community when non-uniform meshes, within a limited stretching factor
range, are employed.
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It will also shed some light on the obtained versus expected behavior when
a numerical scheme, whether low or high-order, is tested outside the usual
discretization procedures, i.e., uniformly distributed nodes. Moreover, by
comparing different turbulence modelling options amongst them, we can
establish a general framework for the requirements they should have when
used in an application within Computational AeroAcoustics.

1.5 Outline of the thesis

This thesis is divided into four chapters. The first chapter provides an intro-
duction to Computational AeroAcoustics, making special emphasis on two of
the main concerns within the community: how both the dispersion error and
the turbulence closure modelling affect the validity of the results. The main
contribution of the present research is presented in chapters 2 and 3, which
are self-contained and could be read independently without requiring the
full document. The content of those chapters has been published as original
research articles in international peer-reviewed journals as well as presented
at different conferences during the realization of the doctoral studies. Finally,
the last chapter presents the concluding remarks of the present investigation,
as well as possible investigation lines which could follow from the current
work.

Chapter 2 presents an alternative methodology to compute the effects
that the dispersion error has on a numerical simulation. This is done by de-
veloping an alternative measure of the dispersion error, mimicking Tam’s
approach based on the Fourier Transform but using eigenvectors and eigen-
values instead of the eigenfunctions of the continuous Laplacian operator.
The comparison between high and low-order schemes is done by presenting
the spectral properties of a representative set of different numerical schemes,
considering both linear and non-linear ones with different order accuracy.

Chapter 3 presents the comparison between low and high-order schemes
in a real-world scenario. The numerical results from the simulation of the
turbulent subsonic round jet are discussed. This chapter also focuses on the
second open area within CAA presented in this introduction: how the turbu-
lence modelling affects the quality of the obtained results.
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For this reason, the selected case is simulated in a set of refining meshes
using two different numerical algorithms, to analyze the effect of the numer-
ical scheme, and a combination between dynamic adaptinc subgrid length
scales and new subgrid LES models, to analyze how the selected turbulence
closure model impacts the quality of the results.

Finally, Chapter 4 summarizes and reviews the conclusions extracted in
this thesis, as well as proposes future research lines that can follow the present
work.
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[15] Roland Ewert and Wolfgang Schröder. Acoustic perturbation equations
based on flow decomposition via source filtering. Journal of Computational
Physics, 188(2):365–398, 2003.

[16] Francesc Xavier Trias, Oriol Lehmkuhl, Assensi Oliva, Carles David Pérez-
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2

How to compute

dispersion errors on

Cartesian stretched

meshes for both linear and

non-linear operators

Main contents of this chapter has been published in:

J. Ruano, A. B. Vidal, J. Rigola and F. X. Trias. A new general method to
compute dispersion errors on Cartesian stretched meshes for both linear and
non-linear operators. Computer Physics Communications, 271, 108192, 2022.

Abstract. This chapter presents a new analysis for the dispersion error and
the methodology to evaluate it numerically. Here we present the spectral prop-
erties of several convective schemes, including non-linear ones, on stretched
grids for linear advection problems. Results obtained with this method when
applied to uniform structured meshes converge to the results obtained with
the classical method for all the studied schemes. Additionally, effects on the
time step depending on which scheme is used are also analyzed using the pro-
posed method. The extracted conclusions, taking into account both errors and

31
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computational cost, allow for the proposal of an optimal scheme according to
the selected meshing strategy.

2.1 Introduction

Discretization of the advective term in Computational Fluid Dynamics (CFD)
and Computational AeroAcoustics (CAA) is still an open issue. Among others,
it is well known that in order to preserve the skew-symmetry of the continuous
operator, its discrete counterpart should be also skew-symmetric; this can
only be achieved by means of the central convective schemes whether those
proposed by Tam and Webb [1] or Bogey and Bailly [2], or the compact schemes
of Lele [3], or the symmetry-preserving schemes studied by Trias et al. [4],
Verstappen and Veldman [5], or Rozema et al. [6].

However, keeping the skew-symmetry of the discrete operator is not al-
ways the best option. Skew-symmetric operators do not introduce any dif-
fusion, which means grid-to-grid numerical instabilities, which cannot be
advected [1, 2, 7], can appear during the simulation. To avoid these artificial
oscillations, numerical schemes that introduce diffusion are used. The most
known approach is “up-winding” the numerical scheme, i.e. changing the
stencil basis regarding the flux direction; this approach was first proposed
by Courant et al. [8]. Nevertheless, upwind schemes are known to introduce
excessive dissipation in the whole domain instead of just adding diffusion at
points which start to diverge. Another option consists in using Total Variation
Diminishing (TVD) schemes, to preserve the monocity of the solution and
prevent the apparition of spurious modes [9]. However, is well known that
linear TVD schemes are only first-order accurate as shown by Godunov [10].
In order to use high-order schemes without introducing spurious oscillations,
non-linear techniques were developed. Flux or slope limiters [11] allow to use
high-resolution schemes when the solution has no sharp gradients whereas
low resolution and dissipative schemes are used when the solution has sharp
oscillations. The change between these two schemes is done by means of a
limiter, a function computed from the field which is being advected. Other
approach that allows to keep a higher order of accuracy are the Essential Non-
Oscillatory (ENO) schemes introduced by Harten et al. [12], or the Weighted
Essential Non-Oscillatory (WENO) schemes of Liu et al. [13]. These schemes
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use several stencils, the number and size of them depending on the order of
accuracy, and the resulting scheme is constructed using the smoothest interpo-
lating polynomial at each node. The main difference between both methods is
the fact that the latter uses weights that depend on the local smoothness of the
solution at the different stencils. In a similar way, Ren et al. [14, 15] proposed
their own dissipative numerical schemes with controllable dispersion but
keeping dissipation at minimum.

When a numerical scheme is selected, is also important to know its as-
sociated error. As previously commented, upwind schemes are known to
be dissipative, which means a diffusion error is introduced when are used.
Regarding dissipation error, Schranner et al. [16] and Komen et al. [17] studied
and quantified the effective dissipation rate in a general framework, extending
their methods onto unstructured meshes. On the other hand, central schemes
do not introduce any diffusion but another kind of error due to the approx-
imation of the differential operator; this is the dispersion error. Dispersion
error cannot be avoided when approximating a differential operator unless
spectral methods are used. The spectral errors, i.e. the difference of the ana-
lytical wavenumber versus the numerical, have been widely studied in the
bibliography. Tam and Webb [1] and Lele [3] both studied the errors of central
difference schemes achieving similar conclusions. More recently, Pirozzoli [18],
Fauconnier and Dick [19] and Zhao et al. [20] have extended the results of
Tam and Lele onto non-linear schemes, such as ENO-WENO or schemes using
flux limiters.

The classical methodology applies on the transport term of the system of
Partial Differential Equations modelling wave propagation. However, it re-
quires this term to be in advective form. For example, for the Euler Equations,
one should use their characteristics form, i.e., the fluxes are calculated after
applying the chain rule for the derivatives

∂

∂t
q +∇ · f (q) =

∂

∂t
q + J( f , q) · ∇q = 0; (2.1)

where q ∈ IRD+2 are the fluid magnitudes, f ∈ IRD+2 Eulerian fluxes, J( f , q) ∈
IR(D+2)×(D+2) the Jacobian Jij = ∂ fi/∂qj and D the number of dimensions of
the model. Then, the term in the center of Eq.(2.1) is projected on a unitary
orthonormal basis of the Euclidean space where it is defined and one obtains
the set of locally decoupled wave equations on each of the characteristic
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variables
∂

∂t
rj + cj

∂

∂s
rj = 0, j = 1, . . . , D + 2, (2.2)

where t is the time and s is a generic space coordinate. Then, the analysis
studies the ratio between numerical approximations of ∂rj/∂s and rj in Eq.(2.2)
when rj are mono-modal sinusoids and the analytical values these ratios
should take. These ratios are evaluated in the Fourier space by means of
the Fourier Transform algorithm. The wave propagation speeds cj in this
procedure are assumed to be constant in space and time.

The classical analysis of Tam and Webb [1] and Lele [3] concluded that
using high-order schemes is the best option to reduce dispersion error. In a
similar way, Pirozzoli [18] also concluded that high-order schemes, including
non-linear schemes, were the best option in order to reduce the committed
dispersion error. Bogey [21] used their developed high-order schemes [2] to
simulate high-Reynolds jets. Shur et al. [22, 23] uses a fourth-order central
-fifth-order upwind variant of the Roe scheme in the convective term when
simulating jets. Fu [24] developed its very-high-order Targeted ENO (TENO)
schemes to satisfy the approximated-dispersion relation when simulating,
among others, very high-Mach astrophysical jets. Ewert and Schröder [25]
and Seo and Moon [26] solved acoustic transport equations, instead of Navier-
Stokes equations, also using high-order schemes to reduce dispersion errors.
However, low-order schemes in the field of Computational AeroAcoustics
are still used and achieving good results. Fuchs et al. [27, 28] computed both
acoustic and hydrodynamic fields of a subsonic single-stream round jet and
the acoustics of a Rudimentary Landing Gear (RLG) by means of 2nd or-
der schemes. Tyacke et al. [29] used the Kinetic Energy Preserving (KEP)
discretization of Jameson [30] to compute the aeroacoustics of a jet in an indus-
trial configuration. Both authors achieved promising results without relying
on high-order discretizations of the convective term. And finally, dispersion
error is not just a problem for CFD or CAA simulations , nor only tackled
by engineering applications; it extends towards all physics involving wave-
like phenomena. Among others, Maxwell equations have a big associated
community interested on numerical dispersion. Zheng and Chen [31], or
more recently Blinne et al. [32], have both studied numerical dispersion on
electromagnetic equations.

The analysis employed by previous researchers does not allow to study
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mesh non-uniformity. All the studies employed a Discrete Fourier Transform,
which requires a uniform discretization. Nevertheless, most, if not all, of the
used meshes in the CFD and CAA community are stretched or non-uniform;
see, for instance, Bogey [21], Shur et al. [22, 23] or Bodony and Lele [33].
Moreover, stretching is a known mechanism that introduces numerical errors
in the simulation, such as the diffusion introduced by Rai and Moin [34] to
create a buffer zone to attenuate oscillations at the outflow, or the reflections
studied by Vichnevetsky [35] due to an increase of the mesh size. Trefethen
[36] and Vichnevetsky [35] studied how mesh anisotropy or non-uniformity
introduce additional errors such as dispersive waves.

Additionally, when high-order schemes are recommended to be used, usu-
ally the temporal integration is not taken into account. However, the spatial
integration is just a part of the whole integration procedure. In the method-
ology developed by Trias and Lehmkuhl [37] to determine the maximum
time-step without having to rely on the CFL condition or the definition of a
mesh size, ∆x, it was concluded that the maximum eigenvalue of the discrete
convective operator is the one that restricts the time-step. As can be seen in
all the results of Tam and Webb [1], Lele [3] and Pirozzoli [18], the recovered
wavenumbers are no other than the numerical eigenvalues of the discrete
system. Analyzing their results, the maximum numerical eigenvalue rises as
the order of the differential scheme does. Thus, if the maximum numerical
eigenvalue rises, the maximum allowable time-step will reduce. Then, more
iterations will be required if a high-order scheme is used instead of a low-order
one. Consequently, it may be wrongly concluded that high-order schemes
have a reduced total computational cost for a given resolution.

In conclusion, the reasons for using high-order methods on wave prop-
agation problems in order to reduce dispersion are still open to debate. In
this chapter, we develop a new methodology to overcome the limitations of
the classical approach. Here, we will analyse numerically several of the most
used numerical schemes on CAA, or wave-propagation simulations in general,
taking into account additional parameters which usually are not considered,
such as mesh stretching and the influence the scheme has in the determination
of the time-step. This opens the door to dispersion error analysis on any
mesh. The presented methodology is tested in a Finite Volume Method (FVM)
framework, but the extracted conclusions are applicable to other discretization
methodologies such as Finite Difference Method (FDM).
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The rest of the chapter is organized as follows: in Section 2 the link be-
tween the classical approach used to study dispersion error and the present
methodology is discussed as well as all the analytical derivation required. In
Section 3 we detail how to apply this alternative methodology. In Section 4,
a set of numerical tests are proposed and conducted. The results are later
analysed and commented. In Section 5, a two-step study is presented: first,
the effect that mesh stretching has onto the time step taking into account the
order of the convective scheme is analysed. With these results, we study how
the whole computational cost of the simulation is affected by using stretched
meshes. Finally, in Section 6 the extracted conclusions of the whole chapter
are discussed.

2.2 Theoretical background

In this section, we include the required theoretical background in functional
analysis and linear algebra to fully understand the implementation of the
methodology derived in section 3.

Let f (x) : IR 7→ IR be a function that can be decomposed into a sum of
sinusoids and

f̂ =

∞∫
−∞

f (x)e−2πixα dx, (2.3)

is its Fourier Transform. Then, the Fourier Transform of the spatial derivative

f ′ =
d

dx
f (x), (2.4)

of f is:
f̂ ′(α) = iα f̂ . (2.5)

However, the previous expressions do not hold when the space is dis-
cretized. Namely, taking a discretization of the physical space defined by
Ω = {ω1(x), ω2(x), ω3(x), . . . , ωN(x)}T, f is approximated with

f (x) ≃
N

∑
j=1

ωj(x) f j = Ω · f , (2.6)
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where the “N” scalars f j are the components of the array f = { f1, f2, f3, . . . , fN}T ∈
IRN . If a Finite Difference discretization is selected, the different elements of Ω
would be equal to:

ωi(x) =


1 if x = xi

0 elsewhere
(2.7)

In case a Finite Volume approach is selected, with non-overlapping volumes,
the elements of Ω would be:

ωi(x) =


1 if x ∈ Vi

0 elsewhere
(2.8)

Where Vi denotes the ith control volume of the discretization. Assuming the
discretization is uniform and the physical space is 1D, one can approximate
the derivative f ′ with

f ′(x) ≃
N

∑
j=1

ωj(x)
N

∑
k=1

aj,k fk. (2.9)

The previous equation can be written in a matrix-vector form as:

f ′(x) ≃ ΩT A f , (2.10)

where the matrix A stands for the discrete differential operator.
Applying the shifting theorem and the derivative theorem (see Tam [1,38]),

the Fourier Transforms of f and the discrete approximation to its derivative
are related with

f̂ ′(α) ≈ 1
∆x

[
∑

k
akeikα∆x

]
f̂ (α). (2.11)

And the numerical wavenumber α̃ according to the classical analysis fol-
lows straighforwardly:

iα̃ f̂ =
1

∆x

[
∑

k
akeikα∆x

]
f̂ =⇒ α̃ =

−i
∆x

[
∑

k
akeikα∆x

]
. (2.12)



38 §2.2 Theoretical background

But this definition assumes a uniform 1D mesh, as it uses a sole ∆x. To
broaden the concept of numerical wavenumber to non-uniform meshes where
Eq.(2.11) does not apply, the eigenvalues of the derivative operator can be
studied. More precisely, the differences between the analytical and numerical
eigenvalues of the derivative operator. To extend the concept to non-uniform
discretizations, we realize that the Fourier Transform projects functions into
the space of eigenfunctions of the derivative operator of evenly distributed
domains, i.e., Euclidean spaces or uniformly discretized domains. Thus,
instead of projecting the function f in the space of sinusoids, we propose to
project f onto the space of eigenfunctions of the derivative operator, which
does not coincide with sinusoids in non-uniform discretizations. Then, Eq.(2.5)
must be rewritten as:

f ′†(λ) = λ f †(λ), (2.13)

where the projection, ()†, is computed as:

f ′†(λ) =
∞∫

−∞

f ′(x) · β(λ, x) dx;

f †(λ) =

∞∫
−∞

f (x) · β(λ, x) dx,

(2.14)

and β and λ are the appropiate set of eigenfunctions and eigenvalues extracted
from the first-order derivative operator. If we let

⟨ξ |ψ⟩Ωµ
=
∫

Ωµ

ξ(µ)ψ(µ) dµ, (2.15)

be the inner product of {ξ, ψ} ∈ L2(Ωµ, µ), where L2(Ωµ, µ) is the space of
square Lebesgue-integrable functions ψ : Ωµ ⊂ IR 7→ C and ψ the complex
conjugate of ψ. We can rewrite the projections in a more compact form:

f ′†(λ) = ⟨ f ′ | β⟩Ωx
;

f †(λ) = ⟨ f | β⟩Ωx
.

(2.16)

Once discretized, an implicit relation between the numerical eigenvalue
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and the analytical one is found:

λ̃ =
f̃ ′†

f̃ †
=

⟨A f | β⟩
⟨ f | β⟩ , (2.17)

where the discrete inner product is defined as:

⟨ϕ |ψ⟩ =
N

∑
j=1

(
ϕj

N

∑
k=1

〈
ωj |ωk

〉
Ωx

ψk

)
. (2.18)

We remark that ωj and ωk are the j and k terms of the discretization Ω defined
at the beginning of this section.

Both methodologies, the classical and that defined in Eq.(2.17), assume
that the derivative can be explicitly projected into a selected space of functions
and depends linearly on the original f . For more complicated derivation
processes, e.g. non-linear differential operators, these expressions are not
valid. Consequently, another method is proposed.

Namely, let Φ = {ϕ−N(x), ϕ−N+1(x), . . . ϕ−1(x), ϕ0(x), ϕ1(x), ϕ2(x), . . . ϕN(x)}
be an orthonormal basis of functions of Ωx ⊂ IR, i.e,

⟨ϕm | ϕn⟩Ωx
= δmn, (2.19)

where δmn is the Kronecker’s delta.
One can thus define a mapping T : L2(Ωx, x) 7→ C2N+1; T : f (x) 7→

(αm) ∈ C2N+1, where

αm = ⟨ f | ϕm⟩Ωx
=
∫

Ωx

f (x)ϕm(x) dx, (2.20)

is the projection of f (x) onto the m function Φ. Under the pertinent smooth-
ness of f criterion,

f (x) ≃ SN =
N

∑
m=−N

αmϕm(x); lim
N→∞

SN = f (x). (2.21)

This defines the inverse mapping T−1 : C2N+1 7→ L2(Ωx, x), T : (αm) ∈
C2N+1 7→ f (x).



40 §2.2 Theoretical background

The derivative f ′ = d
dx f (x) can also be expressed in terms of its projection

on the set of functions of Φ:

f ′(x) ≃ S′
N =

N

∑
m=−N

αmϕ′
m(x) ≃

N

∑
m=−N

(
αm

N

∑
n=−N

γmn ϕn(x)

)
, (2.22)

where
γmn =

〈
ϕ′

m | ϕn
〉

Ωx
. (2.23)

This holds on the orthonormality of the functions of Φ:

γmn =
〈
ϕ′

m | ϕn
〉

Ωx
=

〈
N

∑
p=−N

γmp ϕp(x) | ϕn

〉
Ωx

=
N

∑
p=−N

γmp
〈
ϕp | ϕn

〉
Ωx

=
N

∑
p=−N

γmpδpn = γmn.

(2.24)

We define the matrix Γ, where its elements (Γ)mn = γmn represent the
projections of the derivatives of ϕm with respect to “x” on ϕn.

Γ characteristics are determined by the selected basis of functions Φ and
the properties of the derivative operator. Assuming null contributions from
boundaries and integrating by parts, it is straightforward to show that the
derivative operator is skew-Hermitian with respect to the inner product of
Eq.(2.15), i.e., 〈

d
dx

ξ |ψ

〉
Ωx

= −
〈

ξ | d
dx

ψ

〉
Ωx

. (2.25)

Thus, Γ is skew-Hermitian too.
Using an approximate derivative operator d̃

dx (·), one gets Γ̃ ∈ C2N+1×2N+1

instead. Making a parallelism with Eq.(2.17), the errors associated with using
approximate differential operators to approximate derivatives are the devia-
tions of γ̃mn from γmn. Finally, to ease the analysis, Φ can be chosen such that
Γ is diagonal and known, i.e., ϕm is an eigenfunction of the derivative. Then,
the possible errors in Γ̃ are:

• γ̃mn ̸= 0 if m ̸= n,

• Re(γ̃mm) ̸= 0, and
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•
Im(γ̃mm)

λm
̸= 1,

where λm ∈ II is the eigenvalue of the derivative on ϕm. A methodology to
compute these errors is described in the next section.

2.3 Methodology

When functions are approximated with discretizations as in Eq.(2.6) to operate
with arrays of scalars, the differential operators of the equations describing
some physical phenomena should be approximated accordingly. For example,
if f is the discrete representation of f (x) on Ω = {ω1(x), ω2(x), . . . , ωN(x)}
as defined in Eq.(2.6), the discrete representation of an approximation to
its derivative f ′ is represented on M = {m1(x), m2(x), m3(x), . . . , mM(x)}.
The different discretizations methodologies of CFD contemplate M ̸= Ω.
However, it is common to project the calculated derivatives onto the original
Ω (see, e.g. [4]) in the following computation steps. Here, we focus on the
compound process A : IRN 7→ IRN , i.e. the approximation to the derivative
f 7→ A( f ) and its projection onto Ω. Since differential operators are linear,
their discrete counterparts should be linear too. Therefore, A( f ) = A f ; A ∈
IRN×N . Splitting A into the Hermitian, D, and skew-Hermitian, C, parts [39],

C =
1
2
(A − A∗); (2.26)

D =
1
2
(A + A∗); (2.27)

A = C + D, (2.28)

where (·)∗ indicates the conjugate transpose. The previous matrices have
interesting properties regarding the inner product:

⟨Cψ |ψ⟩ ∈ I

⟨Dψ |ψ⟩ ∈ R

⟨Cψ | η⟩ = − ⟨ψ |Cη⟩
⟨Dψ | η⟩ = ⟨ψ | Dη⟩ ,

(2.29)

where {ψ, η} ∈ CN .



42 §2.3 Methodology

Both matrices C and D are related, respectively, to the real and the imagi-
nary part of the γ scalars of Eq.(2.23). For a given discretization, these scalars
can be numerically calculated:

γ̃mn = ⟨Aϕm |ϕn⟩
γ̃C

mn = Im(γ̃mn) = ⟨Cϕm |ϕn⟩
γ̃D

mn = Re(γ̃mn) = ⟨Dϕm |ϕn⟩ .
(2.30)

This development holds because Φ is orthonormal and due to the nature
of the skew and Hermitian operators. They can be calculated from A:

γ̃C
mn = ⟨Cϕm |ϕn⟩ =

⟨Aϕm |ϕn⟩ − ⟨ϕm | Aϕn⟩
2

γ̃D
mn = ⟨Dϕm |ϕn⟩ =

⟨Aϕm |ϕn⟩ + ⟨ϕm | Aϕn⟩
2

,
(2.31)

where the values of γ̃mn are the different elements of the matrix Γ̃. To simplify
the analysis, we propose to compute the root mean square of the second index
of the values of γ̃,

λ̃C
m =

√
∑n

( ⟨Aϕm |ϕn⟩ − ⟨ϕn | Aϕm⟩
2

)2

λ̃D
m =

√
∑n

( ⟨Aϕm |ϕn⟩ + ⟨ϕn | Aϕm⟩
2

)2

.

(2.32)

This procedure allows a faster comparison between the analytical value
and the recovered numerical ones. Thus, if the recovered λ̃D

m is not null,
the differential operator will have diffusive behaviour. If the ratio between
|γ̃mm| and λ̃C

m is smaller than the unity, then the off-diagonal values of Γ̃mn,
which should be zero, will have a non-zero value. And finally, the ratio be-
tween λ̃m and the reference parameter indicates the deviation of the numerical
discretization from its expected value.

In summary, given a set of approximations of differentiating operators
{A1, A2, . . . , AP}, their dispersion properties on a representative mesh can
be compared after computing the quantities λ̃

Cj
m and λ̃

Dj
m for each element ϕm

of an orthonormal basis and discrete operator Aj. The following subsections
address the evaluation of Aj and the selection of an appropriate orthonormal
basis Φ.
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2.3.1 Evaluating the gradient

To evaluate the approximations of the derivative operators we propose to
substitute Eq.(2.2) with

∂rj

∂t
+ C(cj, rj) = 0, j ∈ [1, D + 2]; (2.33)

where C(cj, rj) is the convection operator on rj. After this, approximations
of derivative operators can be easily obtained with cj = 1. Notice that in the
continuous space or with constant cj Eqs. (2.2) and (2.33) are equivalent. In
practical simulations, the discrete convective operator is an isomorphism, i.e.
C : Ω 7→ Ω. Hence, this resolves the eventual problem of the different basis
pointed out in former paragraphs of this section. Furthermore, Eq.(2.33) is
advantageous in discretizations where cj is not constant. In fact, in the Euler
Equations in the form of Eq.(2.33), cj : IRD+2 7→ IR; cj(r) and their spatial
variations can only be neglected for small perturbations (e.g. acoustics).

However, this assumption does not hold when simulating hydrodynamic
regions. In these regions, the spatial variations of r are of the same order of
magnitude and spatial variations of cj cannot be neglected. Nonetheless, the
literature shows how low-dispersion arguments based on the classical method-
ology have been employed to support using high-order numerical schemes in
these regions. We expect that the dispersion analysis developed here with the
derivatives computed via Eq.(2.33) will allow comparing schemes in hydrody-
namic regions.

2.3.2 Selection of an orthonormal basis

The method described above has to be applied on an appropriate orthonor-
mal basis of the discrete fields, Φ. The classical analysis [1, 3, 38] performs
the dispersion error analysis on uniform structured meshes. On them, it is
straightforward to use the projections of sinusoids on the canonical basis Ω0,
i.e., define a change of basis of the type B : IRN 7→ IRN . For example, in Finite
Differences or Finite Volumes formulations, one can use bjk =

〈
sin(jx) |ω0

k

〉
Ωx

.
However, in non-uniform or unstructured meshes, this procedure does not
generate an orthonormal basis.

For these cases, we propose to use the eigenvectors of the discrete Laplacian
operator defined on such meshes. This basis is used in signal analysis and
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related fields (see Shuman et al. [40]). Among others, the properties of the
eigenvectors of the discrete Laplacian operator are:

• The eigenvectors are orthonormal.

• In evenly spaced domains, the eigenvectors are discretized sinusoids.

• In the continuous limit, its eigenvectors and eigenvalues collapse into
the eigenfunctions of its continuous counterpart, i.e. sinusoids.

• They retain the concept of mesh connectivity.

Furthermore,
L = G∗G, (2.34)

where L ∈ IRN×N is a discrete Laplacian, G ∈ IRM×N a discrete gradient
(see [41]) and G∗ the conjugate-transpose of G. It is important to notice that
G is not necessarily the differentiating operator on which the dispersion
error analysis is to be conducted but a differencing operator that holds the
equality. Actually, Φ should be independent of the scheme under study to
allow comparisons if several of them will be tested.

The Singular Value Decomposition of G relates its right-eigenvectors
{g1, g2, . . . , gN} and singular values {g1, g2, . . . , gN} with the eigenvectors
{l1, l2, . . . , lN} and eigenvalues of {l1, l2, . . . , lN} of L. Specifically, gn =

√
ln

and gn = ln.
Thus, any scheme under analysis will be compared to a reference gra-

dient. With this, we propose to calculate the quantities of Eq.(2.32) with
Φ = {l1, l2, . . . , lN} and λj =

√
lj for all j ∈ [1, N].

The discrete eigenvectors of a 2nd order discrete symmetric Laplacian
operator are shown in figure 2.1. The Laplacian matrix has been constructed
such the identity vector lies in the kernel of the matrix. To achieve this, the
off-diagonal elements are computed as:

lij =
Aij

−→
dij

−→nij
Vi + Vj

2

, (2.35)

whereas the diagonal terms are the negative sum of the off-diagonal terms:

lii = −∑
i ̸=j

lij. (2.36)
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Figure 2.1: Examples of discrete eigenvectors in two-dimensional meshes. Left: low
eigenvalue associated, right: high eigenvalue associated. Top: uniform mesh; Middle:
stretched mesh; Bottom: unstructured mesh.
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Aij is the intersection area between volumes i and j, −→nij its normal vector,
−→
dij

the distance vector between centroids and Vi and Vj, the volumes i and j.
The results resemble, into some extent, a discrete sinusoid; this is more

obvious when low modes are selected. When higher modes are selected,
as on the figures on the right, this similarity can be lost if non-uniform, or
non-structured meshes are used.

2.3.3 Effect of the phase

For non-linear differential schemes as well as when non-uniform meshes are
used, independently if linear or non-linear discretization schemes are em-
ployed, the discrete function is distorted. This effect changes the function
shape and aliases the derivative into several modes instead of a single one.
Consequently, this difficults obtaining the numerical eigenvalue or wavenum-
ber to compare with the analytical one. Fauconnier and Dick [19] solved
this problem, in uniform meshes, when using non-linear schemes, by setting
the phase of each frequency as a random parameter, obtaining a numerical
wavenumber which depends on both analytical wavenumber and phase. Re-
peating this process 5000 times and then computing the average they obtained
the averaged numerical wavenumber. Another point of view of this method
can be that they chose an orthonormal basis of the mesh, i.e. discrete sinus and
cosinus, which were not the eigenbasis of their discrete operator. Then, they
rotated that basis 5000 times. On average, all the rotated basis will oscillate
around the eigenbasis of his differential operator.

Algebraically, this implies performing a rotation with a random phase for
each pair of eigenvectors, i.e. if the basis of eigenvectors consists in 2N + 1 or
2N + 2 vectors then N rotations will be performed each time. However, thanks
to the specific form of these kinds of rotations , it is very easy to concatenate
N rotations. In fact, we don’t need to perform N matrix multiplications as N
chained rotations but a single matrix due to the specific form of the rotation
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we are using:

R =



1 0 0 · · · 0 0
0 cos(α1) sin(α1) · · · 0 0
0 −sin(α1) cos(α1) · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · cos(αN) sin(αN)
0 0 0 · · · −sin(αN) cos(αN)


(2.37)

And the eigenvectors in the new rotated base:

E′ = RE, (2.38)

where E′ is the matrix containing the eigenvectors in the new base and E the
eigenvectors in the original one.

It is important to notice that for uniform meshes, the Laplacian eigenval-
ues appear in pairs: each eigenvalue appears two times, except 0 and the
maximum one if the discrete mesh has an even number of nodes. However,
non-uniform meshes do not hold this property. Consequently, this methodol-
ogy computes an effective eigenvalue, which is the average between the two
consecutive eigenvalues associated to the rotated eigenvectors.

Therefore, the analysis of Fauconnier and Dick can be extended to non-
uniform meshes by using the concept of rotation matrix instead of the random
phase.

2.3.4 Studying sinusoids or other functions

It may be argued that the discrete eigenvalues of L are not directly related to
waves in the physical, continuous, space. However, the closer the discrete L
approximates the continuous ∇2, the closer are its eigenvalues and eigenvec-
tors to resemble physical waves. Put short, using high order L reduces the
errors , at least for long wavelengths with respect to the mesh characteristic
spacing. But still, the user of the present methodology does not have strict
control of the wavelengths that will be the eigenvalues of L on a mesh.

The following method allows to evaluate dispersion errors for any function
f and, in particular, a sinusoid with wavenumber “k”, e.g., f (k, x) = sin(kx).
Expressing f on Ω, f (k, x) ≃ ∑m a(k)mϕm(x), with a(k)m = ⟨ f | ϕm⟩Ωx

, which
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are the coordinates of the sinusoid function in the eigenvectors basis. The
derivative is approximated by

f ′(k, x) ≃ d
dx ∑

m
a(k)mϕm(x) = ∑

m
a(k)mϕ′

m(x)

= ∑
m

a(k)m ∑
n

γmnϕn(x),
(2.39)

We can compute an approximation to the classical dispersion error:

S(k, l) =
〈

f̃ ′(k, x) | f (l, x)
〉

Ωx
≃
〈

Γ̃a(k) | a(l)
〉

. (2.40)

where Γ̃ is defined as in Eq.(2.31). As a particular case, when l is equal to k, the
above definition becomes the usual expression of dispersion error on evenly
distributed meshes, i.e. how the derivative of a mode projects in the same
mode:

S(k, k) =
〈

f̃ ′(k, x) | f (k, x)
〉

Ωx
≃
〈

Γ̃a(k) | a(k)
〉

. (2.41)

Thus, the presented methodology is able to numerically approximate the
results in sinusoids basis on general meshes. On the other hand, the classical
analysis cannot cope with non-uniform meshes due to the fact it requires
performing a Discrete Fourier Transform.

2.4 Numerical tests

As application tests to study in this work, we have selected one-dimensional
Cartesian structured meshes with different stretchings. The main reason for
this selection is that structured meshes are one of the most used in the field of
CFD and CAA. Due to the fact our developed methodology does not require
uniform meshing, the results obtained in this work can shed some light on
dispersion phenomena in this kind of meshes. The stretching procedure used
in this thesis consists in applying a Poisson ratio between two consecutive
control volumes, i.e. ∆xi+1 = r∆xi, with r = 1 + s, where s is the percentage
of stretching. In Figure 2.2, we attach some images of the obtained meshes
using this procedure that are used in this work. In this thesis we apply the
aforementioned methodology to several of the most used convective schemes
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Figure 2.2: Used meshes with increasing strteching factor from top (0%) to bottom
(5%) and equal minimum mesh size.

in CAA , or in wave-propagation like simulations in general. We have divided
the tested convective schemes into two groups: linear, which compute the
weights of each stencil just once at the beginning of the simulation, and non-
linear schemes, whose weights depend on the field being computed. Within
the linear schemes, we have chosen a second-order symmetry preserving (SP2),
sixth-order symmetry preserving (SP6), fourth and sixth-order dispersion
relation preserving (DRP4,DRP6) [1] and sixth-order moving least-squares
scheme (MLS3) [42, 43]. The selection of the high-order schemes is not trivial:
SP6, DRP6 and MLS3 have the same formal order of accuracy using different
weights or formulation. On the other hand, SP6, DRP4 and MLS3 use the
same stencils. The non-linear schemes are: first-order upwind (UPW), third,
fifth and seventh order WENO schemes (WENO3, WENO5, WENO7) [44],
and second-order total variation diminishing (TVD) schemes with Superbee,
Minmod and Van Leer limiters (SB,MM,VL). These numerical tests will be
done with several Cartesian structured meshes with different stretching ratios,
as well as different minimum mesh sizes; the total size of the domain will be
kept constant. In Figure 2.2, we show a set of meshes with the same minimum
mesh size and different stretching ratios. The main reason why we do not
include two or three-dimensional Cartesian structured meshes in our study is
that the effective wavenumber in 2D and 3D domains is a linear combination
of 1D wavenumbers. This was also analysed by Lele [3] or Nogueira [43],
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by their polar plots of different wavenumbers taking into account directivity,
i.e. different combinations of wavenumbers in the Cartesian directions which
produce the same equivalent wavenumber. For example, it is well known
that for first-order upwind schemes and second-order central schemes the
recovered wavenumber is:

k̃x∆x = sin(kx∆x). (2.42)

If two dimensions are considered and the same scheme is used at each direc-
tion, the relation (2.42) holds for each direction. This means that the effective
wavenumber becomes:

k̃ =

√
k̃x

2
+ k̃y

2
=

√(
sin(kx∆x)

∆x

)2

+

(
sin(ky∆y)

∆y

)2

. (2.43)

And transforming kx and ky to depend on the effective wavenumber, k:

kx = kcos(θ)
ky = ksin(θ), (2.44)

where θ is the directivity angle. Replacing:

k̃ =

√(
sin(kcos(θ)∆x)

∆x

)2

+

(
sin(ksin(θ)∆y)

∆y

)2

. (2.45)

The numerical wavenumber is made non-dimensional by dividing it between
the analytical one. Thus, if dispersion relation holds, the expected shape of the
plot is the unitary circle. However, dispersion error at each direction distorts
the plot, as can be seen in Figure 2.3.

The test functions used to compute dispersion error are the discrete eigen-
vectors computed from the discrete Laplacian. The Laplacian is discretized as
in Eqs.(2.35,2.36), following a second-order approximation of the differential
operator, ensuring symmetry of the obtained matrix, and with periodic bound-
ary conditions. Once constructed, the eigenvalues and eigenvectors of the
discrete Laplacian matrix are calculated by means of QR reduction algorithm
present in GNU scientific library package [45]. The obtained test functions
are then convected by using each differential scheme previously presented.
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Figure 2.3: Normalized polar plot of wave number anisotropy for wavenumbers
k∆
π = 1

10 , 2
10 , ... 9

10 , 10
10 . Left: second-order central difference scheme; Right: fourth-order

DRP scheme.

The convective term is linearized, i.e. constant advection velocity, in order
to compare the presented method with the classical approach due to the fact
the latter implies a linear convective term. This means the studied convective
term in one direction is:

C((1, 0, 0), ϕ)i =
δ

δx
ϕi. (2.46)

And its discrete counterpart in a Finite Volume framework:

d
dx

ϕi ≃
1
Vi

∑
f∈Vi

ϕ f A f nx, (2.47)

where Vi is the volume of control volume i, ϕ f the interpolated value of ϕ at
face f , A f the surface of face f and nx the x component of the normal vector
of face f .

For the sake of clarity, in Table 2.1 we have summarized the main char-
acteristics of used meshes , i.e. minimum and maximum mesh sizes, ∆xMin
and ∆xMax, and the number of control volumes, NCV, as well as the legend
symbols of the results shown in this section. In the same table, we summarize
the acronyms of the different convective schemes tested. However, we want
to remark that the objective of some of the figures that we show in this study
is not to analyse each case independently; we want to study common trends
that allow to extract more general conclusions. Therefore, it is possible that
the reader wouldn’t be able to fully check each studied case in the next figures,
but just the common trends that those cases have.
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Table 2.1: List of the different used meshes and the symbol of the results obtained
when using them and the acronyms of the convective schemes.

Stretching 0 % Stretching 1 %

∆xMin ∆xMax NCV Symbol ∆xMin ∆xMax NCV Symbol

0.03125 0.03125 32 0.03125 0.03628 30

0.01563 0.01563 64 0.015623 0.02065 56

0.00781 0.00781 128 0.00781 0.01285 100

0.00391 0.00391 256 0.00391 0.00892 166

0.00195 0.00195 512 0.00195 0.00698 256
Stretching 2 % Stretching 3 %

∆xMin ∆xMax NCV Symbol ∆xMin ∆xMax NCV Symbol

0.03125 0.04206 30 0.03125 0.04727 28

0.01563 0.02563 50 0.01563 0.03084 46

0.00781 0.01795 84 0.00781 0.02332 74

0.00391 0.01415 130 0.00391 0.01927 108

0.00195 0.01208 184 0.00195 0.01741 148
Stretching 4 % Stretching 5 %

∆xMin ∆xMax NCV Symbol ∆xMin ∆xMax NCV Symbol

0.03125 0.05203 26 0.03125 0.05893 26

0.01563 0.03703 44 0.01563 0.04146 40

0.00781 0.02850 66 0.00781 0.03377 60

0.00391 0.02468 94 0.00391 0.03032 84

0.00195 0.02222 124 0.00195 0.02722 108
UPW 1st-order upwind SP2 2nd-order symmetric
DRP4 4th-order DRP DRP6 6th-order DRP
SP6 6th-order symmetric MLS3 6th-order MLS

WENO3 3rd-order WENO WENO5 5th-order WENO
WENO7 7th-order WENO MM Minmod

SB Superbee VL Van Leer
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2.4.1 Dispersion error results: Eigenbase

In Figure 2.4 we have included the recovered eigenvalue, using the expression
in Eq.(2.32) and the concept of basis rotation, for several discrete schemes. In
order to avoid a huge amount of figures, we have only shown the results of a
reduced number of schemes. We have selected the most representative ones,
being a mixture of low and high-order schemes as well as linear and non-
linear ones. The first thing that can be noticed when non-dimensionalizing
via the maximum mesh size is the fact that there are two different trends: a
graph corresponding to uniform meshes, in discontinuous line, and a plot
that corresponds to stretched meshes, a dot-line containing the rest of the
simulations. The latter is virtually independent of the minimum mesh size
nor the stretching factor and just depends on the discretization scheme. This
shows that the deviation of the numerical eigenvalue is only given by the
maximum size of the mesh. Consequently, two slightly stretched meshes
with different stretching factors and minimum mesh size but with the same
maximum mesh size will perform in a very similar way.
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Figure 2.4: Recovered numerical vs analytical eigenvalue made non-dimensional
using the maximum mesh size.
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Thus, it is possible to have meshes with high mesh ratios, i.e. 5%, that
have a good behaviour. However, even if this is possible, it does not mean
that it is feasible: in Cartesian stretched meshes, the maximum mesh size is
given by the combination of the minimum mesh size, the stretching ratio and
the domain length. In a numerical simulation, usually, the domain length is
given. Normally, minimum mesh size is given by the minimum hydrodynamic
length scale that needs to be captured. If we want to achieve good resolution
up to a specific eigenvalue, then the maximum mesh size is not really a free
parameter. Consequently, only the minimum mesh size and the stretching
factor are the parameters that can be modified. If a very high stretching factor
is imposed, for a given length and a maximum size, this implies using an
infimum minimal mesh size. On the other hand, imposing a minimum mesh
size restricts the stretching to a very small value.
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Figure 2.5: Difference between diagonal terms and the root mean square of the row of
matrix Γ after 5000 rotations made non-dimensional using the maximum mesh size.

In order to show that the rotation procedure in section 2.3.3 removes
aliasing effects, the difference between the diagonal term and the root mean
square of the matrix row, λ̃C

m in equation 2.32, is plotted on Figure 2.5.
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As it can be seen, the difference between both terms is almost 0, which
indicates the matrix Γ̃ is diagonal dominant and, consequently, effectively
removes aliasing effects.

As previously commented, the recovered eigenvalue depends also on the
phase of the basis. In order to have more information about how modes are
projected, the standard deviation of λ is shown in Figure 2.6. Now, differently
than the average eigenvalue, the standard deviation seems to depend on both
the stretching and minimum mesh size. In other words, the plots do not
collapse for stretched meshes.
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Figure 2.6: Standard deviation of the recovered numerical eigenvalue made non-
dimensional using the maximum mesh size.

Distinguishing between linear and non-linear schemes, non-linear ones
exhibit a non-null standard deviation for uniform meshes whereas linear
schemes have a null standard deviation in the whole spectra in uniform
meshes. This means that the distortion of the signal produced by non-linear
schemes causes the projection of a single mode onto several ones. Analyzing
the difference between high and low-order schemes, the former present higher
standard deviation across the whole spectrum than the latter.
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This implies that despite high-order schemes behave better than low-order
schemes on average, for a given eigenmode and phase high-order schemes
behave worse than low-order ones. Taking into account that the phase varies
during a simulation, this means that on specific times with favourable phase
low-order schemes are preferred over high-order ones. Finally, taking into
account the effect of the minimum mesh size, which in reality is translated
as a rise in the number of valid modes if the domain is kept constant, it
is observed that meshes with small minimum mesh size exhibit a higher
standard deviation than meshes with fewer points, i.e. higher minimum mesh
size.
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Figure 2.7: Recovered numerical vs analytical eigenvalue made non-dimensional
using the minimum mesh size.

Finally, in Figure 2.7 we show the non-dimensionalization of the recovered
eigenvalue using the minimum mesh size instead the maximum. This shows
that meshes with a larger number of modes, and consequently a smaller min-
imum mesh size, have more noticeable differences between the maximum
resolution of the mesh and its uniform counterpart.
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Thus, as the ratio between the maximum and the minimum mesh sizes
becomes higher, the differences between a uniform and a stretched meshes,
keeping constant the minimum mesh size, becomes wider. Consequently,
meshes with higher maximum-to-minimum ratios shown more differences
than meshes that resemble more a uniform mesh.

2.4.2 Dispersion error results: Sinusoids

Similarly to the results obtained in the eigenbase, we can analyse them in the
sinusoids base. The main reason for doing this is the common analysis works
with this base and, if we want a common framework to compare the results,
the most straightforward option is to express our results in the sinusoids base.
In Figure 2.8 we include the recovered wavenumber versus the analytical one;
the non-dimensionalization is performed via the maximum mesh size. This
figure is obtained by performing a change of basis of Eq.(2.41) each time the
basis of eigenvectors is rotated.
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Figure 2.8: Recovered numerical vs analytical wavenumber made non-dimensional
using maximum mesh size.
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Again in this case, but not as clear as when eigenvectors are used, the
stretched meshes tend to the same graph whereas uniform meshes have their
own. This reinforce the idea that modes with a higher wavenumber than the
corresponding to the maximum mesh size should not be taken into account. In
the special case of uniform meshes, the obtained results match with Tam and
Webb [1] and Lele [3] in the case of linear discrete operators and with the ADR
of Pirozzoli [18] in the case of non-linear schemes. The reason why Figures
2.8 and 2.4 are quite similar is because the eigenvector basis and the sinusoid
basis are almost the same up to the eigenvalue equal to 2

∆x , or equivalently
up to the wavenumber π

∆x . In other words, the numerical functions that are
derived are almost the same. However, for modes with higher associated
eigenvalue, this equivalence does not hold.

In Figure 2.9, we include the non-dimensional recovered wavenumber
but using the minimum mesh size instead of the maximum one. As can be
seen, now the figure does not resemble Figure 2.7 at all. This is because now
the used basis in each methodology up to the maximum mode are totally
different.
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Figure 2.9: Recovered numerical vs analytical wavenumber made non-dimensional
using minimum mesh size.
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A conclusion extracted from this figure is that in stretched meshes, several
frequencies are propagated backwards; in other words, they are reflected. This
feature is easily observed when an abrupt change in the mesh size is imposed.

In Figure 2.10 we show the standard deviation of each mode made non-
dimensional in the same way as has been done with eigenvectors. In this case,
however, a clear discontinuity around a specific mode or frequency is not
present. This reinforces the idea that the discontinuity can only be observed
when studying the orthogonal basis associated to the mesh. When transform-
ing the eigenvector base to the sinus base, low frequencies are composed
also of high eigenvectors which appear after the cut-off mode. Therefore,
expressing the results in sinusoids space makes them noisier and with a higher
standard deviation than when expressing them in the eigenvectors space.
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Figure 2.10: Standard deviation of recovered numerical wavenumber vs analytical
wavenumber made non-dimensional using maximum mesh size.

So, even though sinusoids basis is the common base to express the results
in dispersion phenomena, when stretched meshes are used it seems it is not
the most appropriate base to use. Instead, results using eigenvectors seem to
be less dependant on the mesh used and even the stretching.
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2.5 Effect on the time step

Discretizing in space is just half of the whole procedure when Navier-Stokes
equations are solved. The discretization of the transient term requires defining
a time-step, the equivalent of mesh size but in the time domain.

The resolution in the temporal scale must be fine enough to capture all the
transient features of the simulation. Thus, one can set a very small time-step
during the setup process that ensures the simulation will remain stable and
will produce reliable results.

Another option will be to compute the required time-step at each iteration.
This optimizes the integration process because the used time-step is “optimal”;
it could happen that using a constant time-step the temporal resolution is
excessive, leading only to an increase of the computational time without
affecting the quality of the results. The most common option to compute
the time-step is the CFL condition [46]. However, such definition requires
the concept of mesh size ∆x. In cases where the mesh is uniform and 1D
this is not a problem: there is only a ∆x in the whole domain. However, if
the mesh is no longer uniform but still structured, this is not still a problem.
The time-step is then computed as the most restrictive time-step in the whole
domain, involving the ratio between the mesh size and the advective speed
and choosing the lesser of the whole domain.

Nevertheless, when 2 or 3D domains are considered, the computation of
the time-step could become a problem. In cases with grid book, ribbon or
pencil types [47] computed time-step usually does not take appropriatelly
into account the physics due to the fact CFL condition is just too simple. And
finally, when unstructured meshes are used the concept of mesh size is still a
bit shady. To solve this, Trias and Lehmkuhl [37] developed a methodology
which does not require the concept of mesh size to compute the time-step.
Instead, the time-step is constructed using the maximum eigenvalue of the
discrete operator.

Tam and Webb [1] or Lele [3] defined the wavenumber, α, of the finite
difference as:

α =
2

∆x ∑
k

aksin(bk), (2.48)

where ak
∆x = cn−k and b =

2π j
n

.
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To prove that the wavenumber used by them are the eigenvalues of their
differential operator, lets begin with a circular matrix, A, which represents a
linear discrete operator:

A =


c0 cn−1 cn−2 · · · c2 c1
c1 c0 cn−1 · · · c3 c2
... c1 c0 cn−1

. . .
...

cn−2
. . . . . . c0 cn−1

cn−1 cn−2 · · · c1 c0

 . (2.49)

The eigenvalues of the circulant matrix A will be computed as:

λj = c0 + cn−1ωj + cn−2ω2
j + · · ·+ c2ωn−2

j + c1ωn−1
j , (2.50)

where ωj is ei 2π j
n . However, as Tam and Lele imposed central stencils, the

coefficients of the matrix A are skew-symmetric in order to have non-diffusive
schemes. This means cj = −cn−j and the diagonal term, c0, must be null.
Replacing:

λj = cn−1(ωj − ωn−1
j ) + cn−2(ω

2
j − c2ωn−2

j ) + · · · = ∑
k

cn−k(ω
k
j − ωn−k

j ).

(2.51)
This can be further reduced as:

λj = ∑
k

cn−k(ω
k
j − ωn

j ω−k
j ) = ∑

k
cn−k(ω

k
j − ω−k

j ), (2.52)

which due to the symmetries of the exponential functions reduces to

λj = 2i∑
k

cn−ksin
(

2π jk
n

)
. (2.53)

Taking into account just the modulus, this expression is equivalent to the one
found using the classical approach.

Consequently, the plots that show the relation between the numerical and
analytical wavenumber are, indeed, the plots of the numerical eigenvalues of
the differential operator. Using this approach, and considering the plots of
Tam and Webb [1] and Lele [3], is easy to see that higher-order schemes lead
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to a maximum recovered eigenvalue higher than lower-order schemes. If the
analysis of Trias and Lehmkuhl [37] is employed here, this implies that high-
order schemes require a smaller time-step compared with low-order schemes.
Thus, when computing the computational cost, a factor which considers the
maximum eigenvalue should be employed. We include in Table 2.2 the ratio of
the maximum eigenvalue of several linear discretization schemes normalized
with the second-order symmetry preserving scheme and in Table 2.3 the ratio
of the maximum eigenvalue of several non-linear schemes normalized with the
first-order upwind scheme. On both tables we have included an average value,
AVG, of the ratios in stretching meshes; the maximum difference between this
average and the eigenvalue using specific stretching is lesser than 2%.

Table 2.2: Non-dimensional maximum eigenvalue normalised respect maximum
eigenvalue for second-order symmetry preserving in uniform meshes, linear schemes.

Stretching [%] SP2 DRP4 DRP6 SP6 MLS3

0 1 1.7254 1.8368 1.586 1.5615
1 1.203 1.8884 1.9638 1.7688 1.7466
2 1.2396 1.8792 1.9466 1.7704 1.7488
3 1.2501 1.856 1.9239 1.7564 1.7369
4 1.2512 1.8364 1.9018 1.7412 1.7205
5 1.2432 1.8223 1.8748 1.7268 1.708

AVG 1.2374 1.8565 1.9222 1.7527 1.7322

As can be seen, the normalized eigenvalues at fixed stretching are always
higher in high-order schemes than in low order schemes. This means that,
at meshes with the same maximum mesh size, this leads to higher time-steps
when using low order schemes due to the fact the values at tables 2.2 and 2.3
are inversely proportional to the time-step.
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Table 2.3: Non-dimensional maximum eigenvalue normalised respect maximum
eigenvalue for first-order upwind in uniform meshes, non-linear schemes.

Stretching [%] WENO3 WENO5 WENO7 MM SB VL

0 1.1667 1.3317 1.4529 1.2526 1.4053 1.3237
1 1.3747 1.52 1.6315 1.4713 1.6272 1.543
2 1.4036 1.5402 1.6432 1.4946 1.6444 1.566
3 1.4072 1.5362 1.6377 1.4966 1.637 1.5611
4 1.4047 1.5296 1.6249 1.4973 1.6344 1.5573
5 1.3889 1.5183 1.6132 1.4736 1.6205 1.5374

AVG 1.3958 1.5289 1.6301 1.4867 1.6327 1.553

2.5.1 Corrected performance

In order to compare the error vs performance of the different numerical
schemes used in this thesis, a similar approach to the used by Pirozzoli [18] is
employed. In his article, the error was computed as:

e0(k̂Max) =
1

k̂Max
max

0≤k≤kMax

∣∣∣k̂num(k̂an)− k̂an

∣∣∣ , (2.54)

whereas the computational cost of each scheme was computed as:

C ∼ ν

σk̂nD+1
Max

, (2.55)

where ν was a measure of the required machine time per node and time-step,
σ a measure of the Courant number and k̂ are non-dimensional wavenumbers,
being: k̂Max the maximum studied wavenumber, k̂an the analytical one and
k̂num the numerical one. In our case, we will modify the definition of some
of these parameters slightly. We keep the measure of the maximum relative
error as the maximum L2 norm of the difference between the numerical result
and the analytic one, but the rest of parameters will be modified. First, our ν
will not be the required machine time per node and time-step. We will use the
required number of bytes of each scheme, i.e. the number of bytes required to
compute the value at the face.
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Table 2.4: Arithmetic Intensity for each differential scheme.

SP2 DRP4 DRP6 SP6 MLS3

0.0938 0.1719 0.1875 0.1719 0.1719

UPW WENO3 WENO5 WENO7 MM SB VL

0.0938 0.1667 0.267 0.3816 0.125 0.1148 0.1429

The main reason to not use machine time underlies on the Roofline model
[48]. Depending on the arithmetic intensity, the ratio between the number
of floating-point operations and required bytes, the processor works under
different performance regimes. In table 2.4 we include the different arith-
metic intensity values for our implementation of each scheme. This implies
that some schemes will access to higher performances than others and, con-
sequently, do a higher number of floating-point operations per second. In
consequence, it is possible to have a different number of required number
of floating operations but the same clock time. However, actual processor
architectures do not reach peak performance on the range of the arithmetic
intensities obtained; thus, the simulations are memory-bound [49]. In conse-
quence, the factor that rules the computational cost in this situation is not the
time required per simulation but the required number of bytes to compute the
value at the face, which is totally independent of the processor. In table 2.5 we
include the different number of bytes in double-precision, B, of each scheme.

Table 2.5: Number of bytes (B) for each differential scheme.

SP2 DRP4 DRP6 SP6 MLS3

32 64 80 64 64

UPW WENO3 WENO5 WENO7 MM SB VL

32 168 296 456 112 112 112
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The terms σ and k̂Max we will consider them as a whole. Due to the fact σ
involves a division by ∆x and k̂Max involves multiplication by ∆x, is easy to
see that the product will not depend explicitly on the mesh size but implicitly;
the time step is a function of the mesh. We will use the analysis of Trias and
Lehmkuhl [37] to deduce the maximum allowable time step.

Using the formulation on their paper, and for pure advection matrices, the
maximum allowable time step is proportional to:

∆t ∝
1

a∥λMax∥
. (2.56)

Note that we have included the linear advection speed, a, as Trias and
Lehmkuhl deduction involves using the eigenvalues of the convective speed,
which includes implicitly the velocity. In our case, and because we have
considered linear wave propagation, the relation between the eigenvalues of
the convective operator and the derivative operator is just the product. As has
been commented in this work, the maximum eigenvalue when studying linear
advection problems on stretched meshes is only a function of the convective
scheme and the maximum mesh size. Consequently, the previous equation
can be rewritten as:

∆t =
1

a∥λMax∥
∆xMax

∆xMax
≈ ∆xMax

aE
, (2.57)

where E is the tabulated coefficient on tables 2.2 and 2.3. In conclusion, the
effective computational cost in our work will be computed as:

C ∼ B
a ∆xMax

aE kMax
=

B · E
∆xMaxkMax

. (2.58)

In figures 2.11 and 2.12 we have included the computational cost vs the
relative error of the studied convective schemes for different stretching factors.
The upper limit of the wavenumber range belongs to the maximum wavenum-
ber at the coarse mesh. As can be seen, the relative error achieves a minimum
at uniform meshes for both linear and non-linear schemes at the cost of an
increased computational effort.
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Figure 2.11: Computational cost vs relative error at wavenumber range 0 to 32π for
different stretchings and linear convective schemes.

Some non-linear schemes exhibit a break-up in the tendencies; this happens
because the error changes its sign, i.e. the numerical wavenumber is higher
or lesser than the analytical one depending on the mesh resolution. By just
changing from uniform mesh to a mesh stretched 1%, the minimum relative
error increases an order of magnitude, from 10−5 to higher than 10−4.
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Figure 2.12: Computational cost vs relative error at wavenumber range 0 to 32π for
different stretchings and non-linear convective schemes.

Tam [38] studied the deviation point of linear convective schemes and
stated that errors higher than 2% were not allowed on long-range propagation.
Analysing our results for the studied wavenumber range and used meshes,
for stretchings higher than 2% just linear high-order schemes seem to obtain
results with an error lesser than the 2% threshold. Regarding specific schemes,
both upwind and second-order symmetry preserving schemes have the lowest
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computational cost of the whole schemes due to they require few bytes in
comparison with the rest. What is interesting is that these schemes can
achieve similar values of error than high-order counterparts, using each one
different meshes of course, but with approximately a fourth of the required
computational effort. A feature which can be analysed from previous figures
is the fact that low-order schemes seem to keep their order of convergence,
i.e. the slope at each plot is almost the same: doubling the computational
effort, reduces the error to a fourth . However, high order schemes become less
cost-effective as stretching becomes more important. For example, SP6, MLS3
and DRP6 in less-stretched meshes, each time computational cost is doubled
the error is reduced approximately 50 times, in uniform meshes the reduction
is equal to 26, where 6 is the formal order of accuracy of the scheme. However,
in highly stretched meshes, each time the cost is doubled, the error is reduced
less: about 25 times. Consequently, the formal order of accuracy is reduced.
Nevertheless, they are still more cost-effective than low-order schemes, but
less than if uniform meshes are used.

On the family of non-linear schemes, WENO schemes have the highest
computational cost due to they are the ones with the highest number of bytes,
as shown in Table 2.5. As noted by Pirozzoli [18], when strict tolerances are
imposed, WENO schemes become the only possible option as they achieve
very low relative errors due to a lesser slope in comparison with classical
TVD schemes. However, when stretched meshes are used, starting at 2%,
WENO schemes do not reduce the relative error more than TVD schemes;
both have similar error values but a difference of an order of magnitude in
their computational cost. And additionally, when stretched meshes are used,
both TVD and WENO schemes, independently of the employed order, seem
to have almost identical convergence order: when the computational effort is
doubled, the error is reduced a little bit more than one order of magnitude.

Looking Figures 2.11 and 2.12, and with some extrapolation onto finer
meshes, i.e. lesser errors higher computational costs, it seems that low-order
schemes have always lesser computational costs for a fixed error. However,
this is a very tricky statement. First, the obtained error range for stretched
meshes is quite small. Even high-order schemes are not able to reach an
error lesser than 10−4 on slightly stretched meshes; this is more noticeable on
highly stretched ones, where the error is in the range of 1-10%. Consequently,
extrapolating could be misleading.
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And second, the procedure used in this work does not take into account
the simulation as a whole but just one term of the full equation. Pre-processing
times, the size of the mesh that needs to be stored when multiple dimensions
are simulated instead of a single one, the effect that other terms of the full
equation... are factors that should be taken into account if such statement were
claimed. Nevertheless, this is out of the reach of this study.

2.6 Conclusions

In this chapter, an alternative methodology to compute dispersion errors
which is neither restricted to uniform meshes nor linear schemes has been
developed. This methodology arises from questioning how dispersion should
be computed in non-uniform domains to avoid using Fourier Transform. We
thought it would be useful to answer that question as the majority of used
meshes in CFD or CAA are not uniform. The key that opened the door to
use non-uniform meshes was to change the kernel of the method, as it lies
on analysing the spectrum of discrete operators and, consequently, does not
require Fourier Transform. Nevertheless, there is a strong link between the
usual approach to analyse dispersion and the herepresented method: both
use the eigenvectors of the discrete Laplacian. The Discrete Fourier Transform
used in the classical method can be seen as the projection of discrete functions
on uniform meshes onto the eigenvectors of discrete Laplacian. Consequently,
when uniform meshes are used, both methodologies converge onto the same
results.

Regarding the experiments selected, we have chosen configurations able
to produce results which can be compared with previous studies. This means
that, even the method is not restricted to one-dimensional Cartesian struc-
tured meshes, just this kind have been used, even though fully unstructured
three-dimensional meshes could have been used. The first reason to use
one-dimensional meshes is that if unstructured meshes were employed, mean-
ing at least two-dimensional meshes, the results will not be understandable.
For each eigenvalue, two different values will be recovered, three in three-
dimensional meshes. However, and as pointed by Lele [3] or Nogueira [43],
the polar representation of the recovered wavenumber shows that for a given
wavenumber, depending on its components, it has different dispersion errors.
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If eigenvalues are used, the components are not a free parameter, and thus
the result will only show several components but not the total number of
combinations. Additionally, using an unstructured mesh will not provide any
insight in understanding numerical dispersion in a general way as the results
will solely represent the used mesh. Finally, the usage of periodic boundary
conditions is not mandatory in the presented method. However, they have
been used in order to compare with results employing Fourier Transform,
which requires periodic domains.

During the development of the procedure, we have also taken into account
the analysis of Fauconnier and Dick [19]. As both non-linear schemes and
non-uniform meshes distort the signal when approximating the derivative,
the numerical wavenumber depends on both the analytical one and the phase
of the input signal. Thus, the phase should be considered as a study parameter
to compute dispersion characteristics. However, in non-uniform meshes the
phase lacks of sense: the spectral resolution is not the same in the whole
domain. The extrapolation to their analysis to non-uniform meshes uses
rotation matrices. More precisely, instead of changing the phase of a couple
of discrete sinusoids, two consecutive orthogonal eigenvectors are selected
and rotated a random angle; in uniform meshes this is exactly Fauconnier and
Dick method.

Another feature of conflict which wanted to be studied was the computa-
tion of time-step, which affect the whole computational cost of the simulation.
As was studied by Trias and Lehmkhul [37], the maximum allowed time
step is linked with the maximum eigenvalue of the discrete operator. The
dispersion plots of Tam and Webb [1] and Lele [3] are the eigenvalues of their
discrete convective operator. In their plots, it is easy to see that high-order
schemes have a higher maximum than low-order ones; consequently, they
require a lesser time-step. This effect is also included in the herepresented
results regarding the computational cost of discrete schemes.

Regarding the results, and as previously commented, when uniform
meshes are used the results match the ones obtained by authors using the
classical approach. Results of linear convective operators match the obtained
by both Tam and Webb [1] and Lele [3], whereas the ADR of Pirozzoli [18]
matches the results obtained in this thesis when studying non-linear schemes.
On the other hand, when using Cartesian stretched meshes a new plot has
been observed.
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More precisely, making the numerical eigenvalue non-dimensional via the
maximum mesh size, the recovered plot does not depend on the stretching
factor nor the number of mesh nodes but just on the discrete scheme. There is,
of course, a transition between the uniform plot towards the stretched plot,
but even slightly stretched meshes, in the range of 1% of stretch, collapse
onto the same plot. What should be noticed is the fact that low-order schemes
seem to transition slower than high-order schemes. Nevertheless, this is
also expected as in high-order stencils a higher number of nodes is required,
implying a higher ratio between the maximum and minimum size of the
stencil. Studying dispersion in the eigenvector space allows to explicitly see
a cut-off mode for stretched meshes which solely depends on the maximum
mesh size. After this mode, each frequency is aliased by a larger number
of modes. This translates into a noticeable increase of variance of each row
eigenmode. However, when plotting the same results but using sinusoid basis
instead of eigenvectors, the results previously commented were not observed:
the plots do not collapse onto a single one for stretched meshes and the cut-off
frequency is not observed.

The results analysing the computational cost show that low-order schemes,
UPW and SP2, seem to keep their formal order of convergence. However,
high-order schemes, independently if they are linear or not, become less cost-
effective in stretched meshes than in structured ones as their formal order
of accuracy is reduced. An interesting conclusion for non-linear schemes is
that WENO schemes, independently of the order, are not a good option for
stretched meshes with stretchings higher than 2%. The numerical error for
both WENO and TVD schemes is appropriately the same, whereas the com-
putational cost is always higher for WENO schemes. It has also observed that
for stretchings higher than 3% the numerical wavenumbers have associated
errors higher than 1% in the studied range, which is the approximate relative
error at which Tam [38] considers there is the deviation point.

Regarding the method’s applicability, the herepresented procedure could
help to develop or select the more appropriate differential schemes when sev-
eral meshes geometries are taken into account. We hope that this methodology
could be applied to the design of meshing techniques leading to reduction of
dispersion errors as it could quantify the associated dispersion error to the
mesh used.
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Segarra, and RWCP Verstappen. Symmetry-preserving discretization
of navier–stokes equations on collocated unstructured grids. Journal of
Computational Physics, 258:246–267, 2014.

[5] RWCP Verstappen and AEP Veldman. Symmetry-preserving discretiza-
tion of turbulent flow. Journal of Computational Physics, 187(1):343–368,
2003.

[6] W Rozema, JC Kok, RWCP Verstappen, and AEP Veldman. A symmetry-
preserving discretisation and regularisation model for compressible flow
with application to turbulent channel flow. Journal of Turbulence, 15(6):386–
410, 2014.

[7] R Charles Swanson and Eli Turkel. On central-difference and upwind
schemes. Journal of Computational Physics, 101(2):292–306, 1992.

[8] Richard Courant, Eugene Isaacson, and Mina Rees. On the solution of
nonlinear hyperbolic differential equations by finite differences. Commu-
nications on Pure and Applied Mathematics, 5(3):243–255, 1952.

[9] Ami Harten. High resolution schemes for hyperbolic conservation laws.
Journal of Computational Physics, 49(3):357–393, 1983.

[10] Sergei Konstantinovich Godunov. A difference method for numerical
calculation of discontinuous solutions of the equations of hydrodynamics.
Matematicheskii Sbornik, 89(3):271–306, 1959.



References 73

[11] Bram Van Leer. Towards the ultimate conservative difference scheme.
ii. monotonicity and conservation combined in a second-order scheme.
Journal of Computational Physics, 14(4):361–370, 1974.

[12] Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R
Chakravarthy. Uniformly high order accurate essentially non-oscillatory
schemes, III. In M Yousuff Hussaini, Bram van Leer, and John
Van Rosendale, editors, Upwind and high-resolution schemes, pages 218–290.
Springer, 1987.

[13] Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-
oscillatory schemes. Journal of Computational Physics, 115(1):200–212, 1994.

[14] Zhen-Sheng Sun, Yu-Xin Ren, Cedric Larricq, Shi-Ying Zhang, and Yue-
Cheng Yang. A class of finite difference schemes with low dispersion
and controllable dissipation for dns of compressible turbulence. Journal
of Computational Physics, 230(12):4616–4635, 2011.

[15] Qiu-Ju Wang, Yu-Xin Ren, Zhen-Sheng Sun, and Yu-Tao Sun. Low dis-
persion finite volume scheme based on reconstruction with minimized
dispersion and controllable dissipation. Science China Physics, Mechanics
and Astronomy, 56(2):423–431, 2013.

[16] Felix S Schranner, J Andrzej Domaradzki, Stefan Hickel, and Nikolaus A
Adams. Assessing the numerical dissipation rate and viscosity in numer-
ical simulations of fluid flows. Computers & Fluids, 114:84–97, 2015.

[17] EMJ Komen, EMA Frederix, THJ Coppen, V D’alessandro, and JGM
Kuerten. Analysis of the numerical dissipation rate of different runge–
kutta and velocity interpolation methods in an unstructured collocated
finite volume method in openfoam®. Computer Physics Communications,
page 107145, 2020.

[18] Sergio Pirozzoli. On the spectral properties of shock-capturing schemes.
Journal of Computational Physics, 219(2):489–497, 2006.

[19] Dieter Fauconnier and Erik Dick. On the spectral and conservation
properties of nonlinear discretization operators. Journal of Computational
Physics, 230(12):4488–4518, 2011.



74 References

[20] Guoyan Zhao, Mingbo Sun, Antonio Memmolo, and Sergio Pirozzoli.
A general framework for the evaluation of shock-capturing schemes.
Journal of Computational Physics, 376:924–936, 2019.

[21] Christophe Bogey. Grid sensitivity of flow field and noise of high-
reynolds-number jets computed by large-eddy simulation. International
Journal of Aeroacoustics, 17(4-5):399–424, may 2018.

[22] Michael L. Shur, Philippe R. Spalart, and Michael Kh. Strelets. Noise
prediction for increasingly complex jets. part i: Methods and tests. Inter-
national Journal of Aeroacoustics, 4(3):213–245, jul 2005.

[23] Michael L Shur, Philippe R Spalart, and Michael K Strelets. Jet noise com-
putation based on enhanced DES formulations accelerating the RANS-to-
LES transition in free shear layers. International Journal of Aeroacoustics,
15(6-7):595–613, jul 2016.

[24] Lin Fu. A very-high-order teno scheme for all-speed gas dynamics and
turbulence. Computer Physics Communications, 244:117–131, 2019.

[25] Roland Ewert and Wolfgang Schröder. Acoustic perturbation equations
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3

The effect of numerical

scheme and turbulence

model on subsonic round

jet spectra

Main contents of this chapter has been published in:

A. P. Duben, J. Ruano, A. V. Gorobets, J. Rigola and F.X Trias. Evaluation
of enhanced gray area mitigation approaches based on jet aeroacoustics. AIAA
journal, 61(2), 612-625, 2023.

Abstract. This chapter presents the investigation of the requirements for
accurate scale-resolving simulation of aerodynamics and aeroacoustics of the
subsonic turbulent round jet. To avoid the non-physical delay in the transition
from Reynolds-averaged Navier–Stokes (RANS) to Large Eddy Simulation
(LES) in a Detached-Eddy Simulation (DES), recently developed dynamic
adapting subgrid length scales (∆̃ω, ∆SLA and ∆lsq) and subgrid LES models
(σ and S3QR) are used as a Gray Area Mitigation (GAM) technique. The case
selected is the aforementioned subsonic turbulent round jet, using a set of
three refining unstructured meshes to analyze the problem’s convergence.
Two different scale-resolving numerical algorithms were used to analyse the
effect of the numerical scheme’s order of accuracy: OpenFOAM and NOISEtte.
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OpenFOAM is a low-order accuracy open-source numerical code, whereas
NOISEtte is an in-house code offering high-order accuracy schemes. The
obtained results show how the selection of both the numerical scheme and the
combination of subgrid length scale and LES model affect the quality of both
jet aerodynamics and acoustics.

3.1 Introduction

Computational AeroAcoustics (CAA) requires a very accurate numerical solu-
tion in the near-field flow region to simulate the aerodynamic noise generation
mechanisms adequately. If turbulence is not well-resolved, acoustics will
not be either. In this context, it is important to know how the numerical
discretization of differential operators and partial turbulence modeling in
a scale-resolving numerical algorithm affect the quality of the results. As
acoustics is very sensitive to the accuracy of simulation of the flow fields that
reproduce noise sources, high-accuracy numerical schemes are in great de-
mand. This is especially important for simulating turbulent jet noise. Bogey [1]
and Shur et al. [2, 3] used high-order schemes on structured meshes, which
can be difficult to deal with in the case of complex geometries in industrial
problems. On the other hand, high-order schemes on unstructured meshes are
computationally much more expensive. To reduce resource intensity, second-
order low-dissipation schemes can be used in combination with meshes that
satisfy extra quality requirements, such as structured-like hexahedral zones in
the jet plume region, flow-aligned mesh lines, and smooth changes in mesh
resolution. Tyacke et al. [4] and Fuchs et al. [5] used second-order schemes
when simulating a jet. Of course, second-order finite-volume methods can
be used with fully unstructured meshes, but with much higher resolution,
as in [6], hoping that this will still be less computationally expensive than
high-order methods. The use of higher-accuracy second-order schemes with
extended numerical stencils can improve the fidelity of results without signif-
icantly increasing computational costs. By higher accuracy, we mean lower
values of the error (relative to the exact solution in model problems [7]) com-
pared to “standard” second-order schemes (see [8, 9]). Bres et al. [10, 11] and
Duben and Kozubskaya [9] use algorithms based on such schemes to capture
both jet plume aerodynamics and far-field noise.
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Another feature that affects the quality of the results, especially the acous-
tics, is how turbulence is modeled. Hybrid RANS-LES methods (HRLM) aim
to achieve an optimal balance between accuracy and computational cost. They
allow simulating flows at high Reynolds numbers without requiring exces-
sively fine meshes, especially in the near-wall region. Among such methods,
the detached eddy simulation (DES) family is one of the most widely used
and extensively validated non-zonal approaches that are actively develop-
ing nowadays. Recent investigations are focused on solving the so-called
gray-area problem in shear-layer flows, which is the delay of RANS-to-LES
transition from steady RANS to the mesh-resolved turbulence operating in
the LES regime. The usual methodology for the gray-area mitigation (GAM)
follows from the definition of the subgrid eddy viscosity:

νt = (CLES∆SGS)
2 · DLES. (3.1)

Here ∆SGS is the subgrid length scale (SGS), DLES is the LES model differential
operator (that is typically derived from the resolved velocity gradient tensor,
G = ∂ui/∂xj), CLES is the LES constant, which is usually calibrated on the
decay of homogeneous isotropic turbulence. Thus, the RANS-to-LES transition
can be triggered by decreasing νt, which, in turn, is achieved by reducing ∆SGS
or DLES. For this, special dynamic subgrid length scales, which are sensitive
to the local flow characteristics, were developed, such as ∆ω [12, 13], ∆̃ω [14],
∆SLA [15] and ∆lsq [16]. All of them, to some extent, contribute to the GAM.
However, they differ in their behavior in the region of developed turbulent
flow. LES models sensitive to two-dimensional flow patterns, such as σ,
WALE [17], or S3PQR [18], can replace the Smagorinsky model used in the
original DES formulation [19] and its modifications DDES [20] and IDDES [21].
The abovementioned SGS and LES models can be applied together [14]. In
doing so, the following are essential questions requiring well-justified answers.
While GAM strategies improve the performance of a scale-resolving algorithm
in the initial part of the shear layers by inducing a rapid transition to resolved
turbulence, do they perform well in the perturbed flow region? And if not, to
what extent? How do GAM strategies affect acoustics? How do they behave
in terms of mesh convergence?

The present study addresses these questions, which are especially relevant
for aeroacoustics problems. Far-field noise is very sensitive to dissipation
coming from the numerical method and turbulence model, and a lack of
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viscosity can lead to the generation of spurious noise caused by instabilities in
the solution. Various GAM approaches are being investigated and evaluated
in terms of accuracy for both aerodynamics and aeroacoustics. The present
work continues the study [22], where the evaluation was mostly focused on
the aerodynamics of incompressible (or low-Mach) shear-layer flows. Here
we present the results of simulating an immersed subsonic turbulent air jet
at a Mach number M = 0.9. In this case, compressibility plays an essential
role, of course. The simulations are performed on a set of refining meshes to
evaluate mesh convergence.

The accuracy of predicting the turbulent jet far-field noise is largely de-
termined by the accuracy of simulating the shear layer evolution. Most of
the computations carried out by many researchers assume a quasi-stationary
simulation of the flow upstream of the nozzle exit (see, for instance, [2,4,9,11]).
This simplification is used because the accurate reproduction of the thin tur-
bulent boundary layer inside the nozzle is very computationally demanding.
Resolving near-wall turbulence inside the nozzle, even in simplified config-
urations (e.g., reduced Reynolds number), requires very fine computational
meshes consisting of hundreds of millions of nodes [1,6,23]. Thus, when there
is no resolved turbulence inside the nozzle, rapid transition in the initial part
of the shear layer is crucial. It can be accelerated to some extent by providing
fine enough mesh near the nozzle edge, as, in [11, 24], which again leads to
much higher computational costs. But if we want to preserve low resource
intensity, the scale-resolving approach and its GAM properties play a deter-
mining role. For example, as demonstrated in Figure 3.3, where the solutions
on the same mesh, with and without delayed shear layer RANS-to-LES transi-
tion, are shown. Thus, the ability of particular scale-resolving approaches with
the GAM properties to adequately predict jet noise in the far-field requires
careful research, which is the focus of the present study. Additionally, we
consider the influence of the accuracy provided by the numerical scheme
on the results obtained. It is done by using the two 2nd order finite-volume
numerical algorithms: the higher-accuracy one realized in the code NOISEtte
and the lower-accuracy one from the OpenFOAM code.

The chapter is organized as follows. The case formulation and computa-
tional setup are presented in section 3.2. The numerical algorithms in use are
described in section 3.3. Then, the results of all the computations with their
evaluation are demonstrated in section 3.4.
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3.2 Case Formulation and Computational Meshes

An immersed jet exiting from a conical nozzle at Mjet = 0.9 and ReD = 1.1 · 106

based on the jet diameter D and the jet exit velocity Ujet is considered. The
present jet case is based on the experiments conducted by Viswanathan [25],
aimed at investigating its aeroacoustic. The reference far-field data, OASPL
and 1/3rd spectra, are taken from there. The jet plume aerodynamics and
turbulence characteristics are evaluated using the experimental data of similar
jets [26–30]. The computational domain, mesh, and boundary conditions
are obtained from the study carried out by Shur et al. [31]. This case was
already used in several works: Shur et al. [3], Duben&Kozubskaya [9], and in
Pont-Vı́lchez et al. [22].

The most common and widely used approach to jet simulation is when the
internal part of the nozzle is present in the computational domain with the the
total pressure, temperature, and velocity direction specified at the inlet. This
approach, with the nozzle considered, has been used either with or without
resolved turbulence upstream of the nozzle exit [4, 6, 11, 32].

In the absence of resolved turbulence inside the nozzle, some incorrectness
in simulating the initial region of the shear layer is introduced due to the lack
of turbulent content. In this situation, even local mesh refinement near the
nozzle edge does not help [11]. But the proper resolution of turbulence inside
the nozzle in many cases requires too much computational effort for practical
use.

For this reason, turbulence modeling approaches that can provide rea-
sonably accurate solution while avoiding scale-resolved simulation of the
turbulent boundary layer inside the nozzle are of high value. In such ap-
proaches, the GAM property plays a crucial role, since it is responsible for the
numerical RANS to LES transition. Therefore, in the present work, we study
GAM in such conditions, when no resolved turbulence is present at the nozzle
exit.

In order to further reduce computational cost, we use the two-stage
approach, as in many other jet simulations using various numerical algo-
rithms [3, 5, 9, 14, 22]. At the first stage, the entire configuration with both the
nozzle and the jet plume is simulated using RANS. This first-stage steady-state
solution for the present simulations was provided by M. Shur and M. Strelets
from the Peter the Great St. Petersburg Polytechnic University.
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At the second stage, the jet-plume region is simulated separately using a scale-
resolving method with the obtained stationary RANS solution imposed on the
boundary surface at the nozzle exit. This allows us to save the computational
cost of maintaining a predominantly stationary zone inside the computational
domain during the scale-resolving simulation. If the GAM works fine in this
simplified configuration, we can expect that it will also work in the entire
setup with the nozzle (the opposite is not so obvious).

A set of hexahedral refining meshes, labeled Grid 1, Grid 2, and Grid 3,
is used for the simulations. These three meshes are directly inherited from
Shur et al. [31]. Table 3.1 summarises the main parameters of these meshes:
the total number of nodes, Nn; the number of nodes in the azimuthal direction,
Nφ; the mesh step sizes ∆x, ∆r, ∆φ relative to the nozzle diameter, D, in the
streamwise, radial and azimuthal directions, respectively.

Table 3.1: Meshes parameters

Parameter Grid 1 Grid 2 Grid 3
Nn 1.52M 4.13M 8.87M
Nφ 64 80 160
∆x/D at the nozzle exit 0.011 0.008 0.008
min (∆r/D) in the shear layer 0.003 0.0025 0.0025
r∆φ/D in the shear layer 0.05 0.04 0.02

Additionally, the distributions of the minimum (∆min) and maximum
(∆max) values of the subgrid length scales along the jet lip line (the streamwise
line downstream of the nozzle edge) are presented in Figure 3.1. The nodal
values of the ∆min and ∆max are derived from the corresponding heights of the
incident elements.
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Figure 3.1: Distributions of maximum (∆max/D, solid lines) and minimum (∆min/D,
dashed lines) mesh sizes along the lip line for the meshes considered

3.3 Mathematical Models and Numerical Methods

All the simulations are carried out using the DDES [20] approach. Note that
due to the absence of co-flow, the method operates mostly in the LES regime,
so the influence of the external nozzle walls is negligible. The incorporation
of alternative LES models is done according to the technique suggested by
Mockett et al. [5, 14].

In order to evaluate the sensitivity of the eddy viscosity models on the
jet simulation results, two scale-resolving algorithms are considered. The
use of two codes with significantly different numerical schemes in terms of
approximation accuracy allows us to more comprehensively investigate the
performance of considered eddy-viscosity models.

One of the codes, the OpenFOAM open-source simulation software, relies
on a basic second-order finite-volume method for unstructured meshes. The
convective part is discretized using the hybrid scheme of Travin et al. [33],
which provides a blend of the second-order central differences and upwind
schemes. The sonicFoam flow solver has been used for the simulations in
the present work. sonicFoam has been set up to have two PISO loops, i.e.
nCorrectors = 2, and two additional outer loops, i.e. nOuterCorrectors = 2.
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These setup values had been found previously as otherwise, there was a
substantial mismatch between numerical and experimental hydrodynamic
results.

The second algorithm is represented in the NOISEtte code [34, 35]. It
is based on a higher-accuracy scheme with an extended numerical stencil,
namely, the EBR (Edge-Based Reconstruction) scheme [8] with an edge-based
quasi-1D reconstruction of variables. The hybrid scheme for convective terms
uses the adapting blend of the central-difference and upwind schemes [9]
based on an extended numerical stencil containing four points with the special
hybridizing function [36]. The values of the sensor function ( [33] in Open-
FOAM and [36] in NOISEtte), which controls the amount of diffusion (σupw)
in the hybrid schemes, are limited both from below and from above, similarly
to [9].

In both codes, implicit second-order schemes are used for temporal inte-
gration. The maximum Courant–Friedrichs–Lewy (CFL) was set to 5 in all the
simulations. Since the size of the time step directly affects the computational
cost, but can also affect the accuracy of the results, several preliminary simula-
tions were performed for CFL values in the range from 0.9 to 10 to ensure that
the time step is small enough not to affect simulation results.

To predict far-field acoustics, the Lighthill acoustic analogy in the form
of a modified version of the integral Ffowcs Williams and Hawkings (FWH)
method [37] is used. The NOISEtte’s acoustic postprocessor is based on the
formulation 1A proposed by Farassat [38] in terms of retarded times. Acoustic
post-processing of the OpenFOAM results is done via an in-house FWH solver
based on Fourier Analysis, obtaining the equivalent FWH equation but in
Fourier space. This methodology effectively removes the requirement of
retarded time computations, which is substituted by its equivalent in Fourier
space: a phase shift between observer and source. According to Shur et al. [2,
39], the data for acoustic post-processing is accumulated on nested closed
permeable control surfaces, excluding the “quadrupole” volume terms. The
density-by-pressure substitution assuming the isentropic relations [39] and
average over both the outflow-discs [2] and conical “sleeve” surfaces [40]
is applied in order to reduce spurious non-physical noise (see the parts of
the permeable surfaces marked by solid yellow lines in Figure 3.2). All the
far-field noise characteristics are obtained at a distance of 98D from the jet
nozzle center.
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To improve the convergence of the results, they are calculated at 32 azimuthally
equidistant points (for each observer’s angle), followed by averaging.

The time of accumulation for the unsteady simulation data for further
post-processing (both near-field aerodynamics and far-field acoustics) is at
least 250D/Ujet. The transient period (from the uniform fields) takes about
250D/Ujet, but it is significantly reduced by either using the developed flow
computed using a different approach or by interpolating from a coarser (or a
finer) mesh.

Figure 3.2: The instantaneous flow field in the jet plume region (the NOISEtte
simulation on the Grid 3 mesh using the ∆SLA+SMG approach). The yellow lines
mark the location of the FWH control surfaces

NOISEtte simulations are carried out on hybrid GPU-based clusters using
the heterogeneous version [35]. It uses portable multilevel MPI + OpenMP
+ OpenCL parallelization for computing on manycore CPUs and GPUs. In-
formation about the computational cost of simulation of 100 dimensionless
time units (100D/Ujet) is presented in Table 3.2. The number of time steps
performed is about 20 thousand. On CPUs, the performance of the Open-
FOAM and NOISEtte codes is comparable, the latter is even faster, despite
the higher-accuracy scheme used. In must be noted that the overall perfor-
mance depend on the specific solver set-ups, such as the time integration
methods. On GPUs, NOISEtte demonstrates significant acceleration, getting
the equivalent of about 150 CPU cores from a single device.
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Table 3.2: Computational cost of 100D/Ujet time units on Grid 3

Code Hardware configuration Time, h
OpenFOAM 2 × 24-core Intel Xeon Platinum 8160 23
NOISEtte 2 × 24-core Intel Xeon Platinum 8160 12

NOISEtte
2 × 24-core Intel Xeon Gold 6142

1.8
and 2 × GPU NVIDIA V100

3.4 Results and Discussion

3.4.1 Influence of GAM Approaches on Jet Plume Aerodynamics

We evaluate the impact of using all the considered dynamic adapting subgrid
length scales, including their combinations with alternative LES models, on
the jet plume aerodynamics. Simulations on Grid 2 use the DDES method
with the following configurations: ∆vol, ∆ω, ∆̃ω, ∆SLA and ∆lsq with Smagorin-
sky (SMG) model; ∆̃ω+σ; ∆lsq+S3QR. Note that some of them are already
investigated in the paper [22].

Figure 3.3: Instantaneous flow fields (vorticity magnitude, |Ω|) on the Grid 2 mesh
in the mid-span section: strongly delayed RANS-to-LES transition in the shear layer
using the SGS ∆̃ω (left), delayed transition using ∆ω (center) and rapid transition
using ∆SLA.

Grid 2, like the other meshes considered, is typical for the jet case simula-
tion (see the mesh patterns colored by instantaneous fields from the solutions
with a varying delay of the transition in Figure 3.3). The mesh has the finest
resolution (in the radial direction) near the nozzle to resolve the boundary
layer and the shear layer with coarsening downstream (usually smoother in
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the streamwise and faster in the radial directions), while the number of mesh
nodes in the azimuthal direction remains the same. The mesh resolution and
both turbulent and numerical dissipation coming from the scale-resolving
algorithm define the possibility of provoking the transition. This “numerical”
transition resembles the Kelvin-Helmholz instability, accompanied by gen-
eration of quasi-2D, correlated over the azimuthal direction, structures with
evolution to 3D turbulence downstream (see Figured 3.3 left and center). The
appearance of these quasi-2D structures manifests in the form of an overesti-
mation of the turbulence characteristics in the initial part of the shear layer
(see the “humps” in the graphs of rms(u′) in Figures 3.5 and 3.9).

When the flow becomes plausibly 3D right near the nozzle edge (like in
Figure 3.3 right), it usually does not noticeably influence the prediction of the
far-field noise. Conversely, the delay in the RANS-to-LES transition (like in Fig-
ure 3.3 left and center) leads to a drastic overestimation of jet acoustics [2,3,31].
This is caused by the intensification and enlargement of non-physical quasi-2D
structures that inevitably accompany such a transition. Due to their azimuthal
correlation and their large size, which increases while mesh coarsening down-
stream the nozzle edge, they generate spurious noise contaminating the jet
acoustics characteristics. As for the flow after transition, a nonappropriate
(usually lower than “enough”) amount of subgrid turbulent viscosity can
result in the generation of spurious noise. It affects predominantly at the
higher Strouhal numbers, too.
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Figure 3.4: Centerline distributions of streamwise velocity (left) and its rms (right)
obtained using all the considered combinations.

The centerline and lipline distributions of streamwise velocity and its
rms values are presented in Figures 3.4 and 3.5. The graphs demonstrate
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the following properties of the considered approaches. The usage of ∆̃ω,
∆vol, ∆ω and ∆lsq with SMG clearly leads to the delay of the RANS-to-LES
transition. This effect is more pronounced for ∆̃ω and ∆vol than for ∆ω and
∆lsq. The absence of quick transition in the early shear layer region generally
yields drastic underprediction of the jet flow. More precisely, the result of
the delay is manifested in the following. First, underprediction of the jet
core region is observed (see Figure 3.4 left): the location of dumping the jet
centerline velocity is shifted upstream. Second, there is strong overprediction
of streamwise velocity rms values at 2 ≲ x/D ≲ 11 downstream the nozzle
along both the jet center and the lip line. Moreover, the underprediction
of rms(u′) starting from x/D = 10 in the shear layer is also characteristic.
The attenuation of the delay with consequent better prediction of jet plume
aerodynamics is strongly correlated with the behavior of distributions of
turbulent viscosity levels presented in Figure 3.6. It is seen that the decreasing
of νt/ν leads to the suppression of the GAM problem and, in turn, towards
better jet plume aerodynamics prediction.
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Figure 3.5: Lipline distributions of the rms of streamwise velocity obtained using all
the considered combinations.
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Figure 3.6: Lipline distributions νt/ν obtained using all the considered combinations.

The simulations carried out using ∆SLA+SMG, ∆lsq+S3QR and ∆̃ω+σ demon-
strate a fast RANS-to-LES transition in the shear layers and a quite accurate
prediction of the jet near field characteristics, as evidenced by their compar-
isons with the experimental data in Figures 3.4 and 3.5. When using these
combinations, the values of u and rms(u′) do not differ much from each other
both along the center line and along the lip line of the jet, while the νt/ν levels
along the lip line differ noticeably (see Figure 3.6). Similar results for these
models were obtained in the paper [22]. Thus, it is of interest how the use of
different approaches (that allow simulating the jet plume correctly) affects the
prediction of noise in the far-field. The next part of the chapter is dedicated to
investigating the performance of the selected enhanced DDES modifications
(∆SLA+SMG, ∆̃ω+σ and ∆lsq+S3QR) on jet acoustics. Other configurations
that allow such unacceptable delay in the transition in the shear layer are not
considered for further study because they result in strong misprediction of the
far-field noise. The same effect was demonstrated by Shur et al. [3] where the
∆̃ω+SMG was considered too.

3.4.2 Influence of the Selected GAM Approaches on Jet Aerodynam-
ics for a Set of Refining Meshes

The comparison of both the center and lipline distributions of streamwise
velocity and rms of its pulsations using both NOISEtte and OpenFOAM codes
on a set of refining meshes is presented in figures 3.7-3.9. A noticeable trend,
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typical for all the considered approaches and numerical algorithms, is that the
mesh refining leads to better agreement of the results with the experimental
data. It can be stated that convergence is achieved on the Grid 3 mesh. As for
the comparison of the results obtained using different numerical algorithms
with each other, it is seen from Figures 3.7-3.9 that the NOISEtte ones are closer
to the reference on the same mesh, thanks to the usage of higher accuracy
numerical scheme.
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Figure 3.7: Centerline distributions of the streamwise velocity obtained using
NOISEtte (left) and OpenFOAM (right) on a set of refining meshes (top to bottom).
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Figure 3.8: Centerline distributions the streamwise velocity pulsations rms obtained
using NOISEtte (left) and OpenFOAM (right) on a set of refining meshes (top to
bottom).

The behavior of the Reynolds stresses in the initial part of the shear layer,
presented by the rms(u′) in Figure 3.9, requires special attention. A wide
peak characterises all the results at 0.2 ≲ x/D <≲ 2 that is present in all the
computations and, depending on mesh and numerical algorithm, one or more
narrow peaks earlier. All of them are the consequence of not physical but
“numerical” solution transition in the early shear layer region, from steady
RANS to resolved LES. The width and power of the peaks depend on the
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properties of the computational algorithm, models, and mesh resolution. The
result of mitigation of this problem, either by the usage of the GAM approach
or by mesh refining, is manifested by a narrowing of the peaks and a reduction
of the corresponding maximum values. This can be traced, for example, by
the results using ∆̃ω+σ (see graphs of Figure 3.9, from top to bottom).

In general, analyzing the graphs in Figures 3.7-3.9, we can say that for all
the approaches, there is mesh convergence in the jet plume aerodynamics.
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Figure 3.9: Lipline distributions of the streamwise velocity pulsations rms obtained
using NOISEtte (left) and OpenFOAM (right) on a set of refining meshes (top to
bottom).
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3.4.3 Influence of the Selected GAM Approaches on Jet Aeroacous-
tics for a Set of Refining Meshes

In contrast to the near-field aerodynamics results, the correct prediction of
noise in the jet far-field is a more challenging task. As was mentioned above,
both simulation of physical noise sources and the possible appearance of
“spurious” sources are very sensitive to the scale-resolving approach used.
NOISEtte and OpenFOAM results are presented in Figures 3.10-3.12. The
overall sound pressure levels’ (OASPL) distributions (noise directivity) are
shown in Figure 3.10. Figures 3.11 and 3.12 plot 1/3rd octave integrated
spectrums at the observer angles θ = 60◦ and θ = 150◦, respectively (θ = 180◦

corresponds to the jet downstream direction). These angles (marked by vertical
dashed lines in Figure 3.10) are chosen as representative ones to emphasize
and analyze the discrepancy between the different approaches considered and
the experimental data.

Considering all the results in general, the following observations and con-
clusions could be revealed. First of all, it is common for all the considered
approaches that mesh refinement leads to better correspondence with the refer-
ence data and less difference from each other. In contrast to the corresponding
NOISEtte results, OpenFOAM results obtained using different approaches on
the same meshes are more correlated with each other and appear more stable
(independent of either approach or mesh). This is explained by the use of a
higher-accuracy numerical scheme in NOISEtte in contrast to OpenFOAM,
where numerical dissipation and related errors dominate. So the peculiarities
of the different LES models and SGS emerge more vividly.
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Figure 3.10: Noise directivity obtained using NOISEtte (left) and OpenFOAM (right)
on a set of refining meshes (top to bottom).

When evaluating the OASPL distributions obtained using the NOISEtte
code (Figure 3.10 left), the following common trend of discrepancy with
experimental data is seen: overestimation of the noise levels at the lower
observer angles and underestimation at the higher ones, at the same time. It
is more pronounced when ∆lsq in combination with the S3QR model is used.
This effect is amplified while mesh coarsening.
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The overestimation of the noise levels for θ ≲ 100◦ is related to the spurious
noise generation in the early shear layer region due to the nonphysical RANS-
to-LES transition accompanied by instabilities provided by the low-dissipative
numerical scheme. It manifests on the part of the spectrum at the higher
Strouhal numbers, St ≥ 1 (see Figure 3.11, for instance), especially on the most
coarse mesh Grid 1 (the left graphs).
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Figure 3.11: 1/3rd-octave integrated spectrums at the observer angle θ = 60◦ using
NOISEtte (left) and OpenFOAM (right) on a set of refining meshes (top to bottom)..
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The significant underestimation of noise levels at θ > 130◦ comes from
“noise deficit”, mostly at lower Strouhal numbers in the vicinity of noise peak
(in the range 0.2 < Sh < 0.9, approximately) that is seen in Figure 3.12. Noise
in this range of Strouhal numbers is associated with the dynamics of large
vortices with a size of the order of the nozzle diameter. This effect is similar
to the results obtained using the Implicit LES approach in [31] on the same
meshes Grid 1, Grid 2 and Grid 3. Nevertheless, on Grid 3, all the considered
approaches allow predicting the OASPL in the range 50◦ < θ < 140◦ with
an error below 1.4 dB compared to the experiment (it is more clearly seen
in Figure 3.13 top). The revealed differences from the experiment for the
considered models are analyzed in detail in the next subsection using the
results obtained on Grid 3.

Distinguished trends characterize the OASPL distributions obtained us-
ing OpenFOAM compared with the NOISEtte ones. As can be seen in Fig-
ure 3.10 bottom, the predicted noise levels better agree with the experiment in
the range 90◦ < θ < 130◦ on Grid 1 and Grid 2, the deviation is within 2 dB.
At the same time, the OpenFOAM results at θ < 90◦ demonstrate comparable
overestimation of OASPL as the NOISEtte ones. As was mentioned above, in
contrast to the NOISEtte, all the considered approaches provide very similar
far-field results when OpenFOAM algorithm is used. This is true for both
overall values and spectral distributions.

The 1/3rd octave spectrums at θ = 60◦ and θ = 150◦ (Figures 3.11 and 3.12,
respectively) obtained using the NOISEtte reveal the following properties of
the GAM strategies considered. First, the usage of the ∆̃ω + σ combination
leads to earlier decay of the spectrum compared to the remaining approaches.
At the same time, it provides the lowest overestimation of the SPL at θ = 60◦

and the lowest underestimation at θ = 150◦. The usage of the ∆SLA results in
similar behavior of the solution.

As for the OpenFOAM results presented (Figures 3.11-3.12 bottom), due
to higher numerical dissipation provided by the spatial discretization scheme,
the noise levels are not overestimated in the region 1 < Sh < 4 for θ < 60◦,
but the graphs start to drop earlier together with a shift in the “overestimation
peak” towards lower Strouhal numbers (0.3 < Sh < 2). So, actual resolution
capability of the OpenFOAM algorithm ends up at Sh = 1 ÷ 2. The plots
in Figure 3.12 bottom demonstrate noticeable underestimation of the noise
levels for the Strouhal numbers after the peak of the spectrum (at Sh ≳ 0.4).
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Such behavior, again, is explained by the fact that the accuracy provided by
the scheme used in the OpenFOAM is not enough to resolve small vortexes
contributing to noise propagating far downstream of the nozzle exit.
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Figure 3.12: 1/3rd-octave integrated spectrums at the observer angle θ = 150◦ using
NOISEtte (left) and OpenFOAM (right) on a set of refining meshes (top to bottom).
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3.4.4 Evaluation of Far-Field Results on Grid 3

We have demonstrated mesh convergence for the near-field flow dynamics
and far-field noise results for the three considered combinations with GAM
properties: ∆SLA+SMG, ∆lsq+S3QR and ∆̃ω+σ. As was already mentioned, the
deviations from the experimental values are characterized by overestimation
at lower observer angles and underestimation at higher ones. However, it
remains unclear why these combinations differ to some extent in the magni-
tude of these deviations. To shed more light on this issue, let us consider other
combinations that provide fast RANS-to-LES transition (which is critical) in
the early shear layer region: ∆vol+σ, ∆lsq+SMG and ∆min+SMG. This will allow
us to study in more detail the dependence of the far-field noise deviations
from the experiment on the level of turbulent viscosity of the LES approach
inside the shear layer.
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Figure 3.13: Deviation of OASPL from the experimental data in dB ∆dB =
OASPLcomp − OASPLexp (top) and lipline distributions of νt/ν (bottom) obtained
on Grid 3.

The deviation of OASPL from the experimental data (in dB) is shown
together with the ratio of turbulent to molecular viscosity in Figure 3.13. It is
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seen that the overestimation of the noise levels at the lower observer angles and
underestimation at the higher ones correlates with the distributions of νt/ν.
Therefore, Figure 3.13 demonstrates that approaches with higher turbulent
viscosity throughout the entire shear layer region (except the initial part, which
is crucial to provoke the RANS-to-LES transition), ∆̃ω + σ and ∆SLA+SMG,
(slightly) better agree with the experiment. At low turbulent viscosity, the
deviation is bigger, regardless of whether such low νt is caused by the SGS
alone, as for ∆min+SMG, or also by the LES model, as in the case of ∆lsq+S3QR.
The rest the combinations considered, ∆vol+σ and ∆lsq+SMG, lie between the
the above-mentioned groups in terms of the discrepancy with the experiment.
The mesh convergence results in the previous subsection demonstrate that
approaches with higher values of νt (like ∆̃ω + σ) show better convergence of
the far-field noise characteristics than approaches providing lower subgrid
viscosity (such as ∆lsq+S3QR). This phenomenon is also present when using
OpenFOAM (see the results of ∆lsq+S3QR in Figures 3.11-3.12 bottom).

3.5 Conclusions

New enhanced eddy-viscosity models within the hybrid RANS-LES DDES
method have been investigated. The enhancement considers using GAM
approaches by implying either flow-dependent dynamic subgrid scales, alter-
native LES models sensitive to 2D flows, or both. The object of investigation is
the immersed unheated subsonic turbulent jet. The effect of using different
GAM techniques on near-field aerodynamics and far-field aeroacoustics is
evaluated based on the comparison with experimental reference data. The
simulations are carried out using two different control volume numerical
algorithms realized in the codes NOISEtte and OpenFOAM, respectively, on a
set of refining meshes. The crucial difference between them is that the first one
uses a higher-accuracy scheme to approximate the convective fluxes, while
the second uses a regular second-order scheme.

The testing of various combinations of SGS and alternative LES models
as applied to the scale-resolving simulation of the jet on the Grid 2 mesh is
characterized by the following results. Using ∆̃ω, ∆vol, ∆ω and ∆lsq coupled
with the SMG model leads to a delay in the transition from RANS to LES,
followed by a strong mismatch between the computational results and the
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reference data in the jet plume. Unlike them, the GAM-enhanced combinations
∆SLA+SMG, ∆̃ω + σ, and ∆lsq+S3QR allow mitigating the gray area problem
with significant and very similar influence on the jet near field aerodynamics.
This conclusion is equally valid for the both numerical algorithms considered.

So the study of their capability to predict far-field noise on a set of refining
meshes is conducted. The investigation clearly demonstrated the crucial role
of the numerical scheme for convective fluxes used. Thus, using a higher
accuracy numerical scheme allows the evaluation of the performance and
sensitivity of different GAM approaches. Basic 2nd-order schemes, as in Open-
FOAM, do not permit (at least for practical mesh resolution) to reveal the
subtle effect of the subgrid-scale model on the solution in the GAM-enhanced
combinations. The lack of scheme accuracy leads to a noticeable underestima-
tion of far-field noise at higher Strouhal numbers (for Sh > 2 at θ = 60◦ and
for Sh > 0.4 at θ = 150◦).

This investigation revealed that the usage of advanced GAM techniques is
required to obtain plausible results on practical meshes. It implies a combina-
tion of a SGS model that switches off for 2D flows (FKH function plays this role
for ∆SLA+SMG combination) and a ∆SGS that is close to or lesser than ∆min in
the initial part of the shear layer.

Using only enhanced dynamic length scales does not guarantee adequate
results, because it does not ensure proper diminishing of turbulent viscosity
in the initial part of the shear layer. The considered ∆SGS, except for ∆SLA due
to the FKH function, provide the values in the range between ∆min and ∆max,
with ∆lsq having the smallest values close to ∆min, ∆̃ω the largest. As for their
behavior in the 3D flow regions, after transition, it appears to be consistent
with either ∆vol (∆ω and ∆lsq) or ∆max (∆̃ω and ∆SLA).

The study has shown that using an alternative LES model (like σ or S3QR)
is crucial in the initial part of the shear layer, while its impact is weak in the
remaining areas (downstream of the nozzle exit). It has revealed that using
either any of the considered alternative LES models or the FKH function (as
a part of ∆SLA) may significantly reduce the subgrid turbulent viscosity in
the initial part of the shear layer, provoking the RANS-to-LES transition. So
they are sufficiently reliable candidates for the gray area mitigation. At the
same time, the use of alternative LES operators, rather than the FKH function,
is preferable due to their less empirical nature and the fact that the function
can unexpectedly operate in areas with resolved turbulence.
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All the considered advanced combinations of ∆SGS and DLES allow obtain-
ing consistent with the experiment mesh-converged solution in the jet near
field. As for the far field, despite the different behavior of the solution in
the convergence on a set of refining meshes, on the finest one, all the con-
sidered advanced GAM approaches predict the noise adequately. Note that
the Grid 3 mesh which provides adequate results is still relatively coarse: the
number of cells is about an order of magnitude smaller than in the meshes
used nowadays [1, 6, 11] in simulations of turbulent jets.

In summary, all of the GAM-enhanced combinations considered, ∆SLA+SMG,
∆̃ω + σ, and ∆lsq+S3QR, demonstrate reasonably accurate results, which are
close to each other. However, if we look in more detail, the results show that
the magnitude of deviations from the reference data (overestimation of the
noise levels at the lower observer angles and underestimation at the higher
ones) correlates with the subgrid eddy viscosity distributions, so that dimin-
ishing of νt leads to an increase in discrepancy with the experiment. At the
same time, approaches based on the use of subgrid scales close to ∆max in
the region of resolved turbulence allow to obtain more accurate results that
converge faster to the experiment in terms of mesh convergence. Thus, the
∆̃ω+σ combination is the most prominent example of this. Conversely, the use
of close-to-∆vol subgrid scales is more likely to lead to less accurate results in
far-field aeroacoustics. Thus, among these three combinations, the ∆lsq with
the S3QR model demonstrates slightly worse noise prediction.
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4

Conclusions and further

work

4.1 Concluding remarks

As this thesis is clearly divided into two big blocks, we have decided to
summarise the conclusion of each part separately.

4.1.1 Concluding remarks on the development of a new dispersion
error methodology

How would dispersion error be computed on non-uniform Cartesian grids?
How could we give a measure of this type of error without having to rely
on using a method involving the Fourier Transform? These questions were
the seed to develop an alternative methodology able to give a dispersion
error measure that was not restricted either to uniform cartesian grids or
linear discretization schemes, as the majority of meshes used within the CAA
community are stretched and blendings between diffusive and non-diffusive
schemes are usually selected to ensure stability without compromising the
validity of the results.

The developed method has shown a perfect match when applied to struc-
tured, evenly spaced grids, recovering the classical results from Tam [1] or
Lele [2]. Nonetheless, what is more interesting is that when the method is
applied to uniform or non-uniform grids, and both the analytical and the
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recovered eigenvalue are multiplied by the maximum grid size, two different
plots are obtained. For the selected stretching factor, i.e., 1 to 5 %, the recovered
numerical eigenvalue for all the studied grids overlaps in a single plot.

Thanks to the prior point, we have computed a “maximum” eigenvalue
associated with each numerical scheme. Results show that high-order schemes
have, as a rule of thumb, a maximum eigenvalue 50 % higher than a low-
order scheme. Taking into account Trias and Lehmkuhl [3] considerations for
computing the time step, this implies that high-order schemes should have,
for the same mesh, a time step reduced by 2/3 in comparison to a low-order
scheme, requiring more time steps to achieve the same simulation time.

Finally, the comparison between the effective cost, considering both the
maximum time step as well as the arithmetic intensity and the number of
access bytes each differential scheme requires, has shown interesting results.
First, high-order schemes exhibit a rapid degradation, i.e., loss of the order of
accuracy, compared to low-order schemes, which keep it. In the bibliography,
it is often stated that high-order schemes lose one order of accuracy when
applied to non-uniform meshes; the herepresent work has quantified this
effect. Second, even for very tiny stretching factors, i.e., 2%, the numerical
errors are becoming larger and coming closer to the maximum allowed error
of about 1% suggested by Tam.

The extracted conclusions in this part of the work open the door to study-
ing noise propagation phenomena in a generic computational aeroacoustics
problem. The differences between low and high-order schemes when applied
to the typical meshes used within the field, i.e., stretched grids, and using
the kind of schemes canonical in CAA, i.e., non-linear upwinded schemes to
ensure the stability of the simulation, do not show clear winner amongst the
selected options.

4.1.2 Concluding remarks on jet aerodynamics and aeroacoustics

The second part of this thesis explores an application case, the simulation of a
subsonic round jet, with the primary objective of quantifying the effect of the
selection of the numerical scheme and the turbulence modeling applied have
on both aerodynamics and aeroacoustics. This increases the initial scope of
Pont-Vilchez [4] by not only comparing jet aerodynamics but also taking into
account the effects into the acoustic spectra.
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Regarding the effect that the order of accuracy of the numerical scheme
has on jet aerodynamics, centerline velocities, and their fluctuations show
a slightly better correspondence if high-order methods, i.e., NOISEtte, are
used. In the range x/D < 10, OpenFOAM shows slightly higher oscillations
than NOISEtte at the centerline, with smoothing as the mesh is refined. The
same trend is observed at the lip line, with a faster convergence obtained by
NOISEtte in comparison with OpenFOAM, which approximates the experi-
mental results more slowly.

On the other hand, the scheme selection has a more pronounced effect
on the far-field aeroacoustics. Both codes exhibit noisier results than the
experimental ones at the coarsest mesh, reducing this mismatch when the
mesh is consecutively refined. Nonetheless, NOISEtte 1/3rd integrated octave
spectra show a better agreement between numerical and empirical results
at higher Strouhal numbers, whereas OpenFOAM is not able to achieve the
reference noise levels.

Regarding the effect that the selection of the turbulence model has on
jet aerodynamics, the usage of the Smagorinsky turbulence model leads to
a considerable mismatch between numerical and experimental results; only
when using ∆SLA results become accurate. Nonetheless, this is not surprising,
as ∆SLA is specifically tuned to work together with the Smagorinsky turbulence
model, as this ∆SGS takes the full role as a GAM, without being it leveraged
between the turbulence model and the subgrid-scale. If other options are
considered, such as σ + ∆ω or S3QR + ∆lsq, the GAM works as intended,
obtaining very similar and accurate numerical results for these combinations.

Finally, acoustic spectra on the far field have shown excellent results for the
selected GAM approaches: the differences between numerical and reference
data for the finest grid do not exceed 3 dB, with the maximum difference
located at a very high observer angle (150º). Among all the selected combina-
tions, S3QR + ∆lsq is the one exhibiting more differences between numerical
and experimental results at high angles, whereas all the selected combinations
show almost identical behavior for observer angles lesser than 120º.
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4.2 Further work

As stated in the introduction, direct methods applied to CAA will be an
unrealistic approach until DNS has become feasible on a weekly or, ideally,
daily basis; therefore, hybrid approaches such as the ones used in the present
thesis will be the used option until the computational power allows the first.
Consequently, the current lines within hybrid approaches should be the ones
to focus on: the generation of noise sources and noise propagation.

Regarding the computation of noise sources, the herepresent work has
restricted its application to a decoupled acoustic wave problem. Decoupled
in the sense that hydrodynamics generates the acoustics, but the acoustics
do not interact with hydrodynamics; this basically means the CFD solver is
acting as the noise generator feeding the acoustics solver. Nonetheless, when
supersonic flows are considered, this assumption should be revisited. Screech
tones generated due to the feedback loop between instability waves in the jet
shear layer interacting with shock waves is an example of a non-decoupled
system that appears within an aeroacoustics problem. Therefore, even though
the method used in this work has been shown to be robust and able to produce
reliable results, its validity should also be tested in more challenging cases
with increased Mach numbers. This will allow us to determine the validity
range of the present methodology.

The application case in this work benefits from the absence of walls generat-
ing noise, as the only walls are located upstream of the main noise-generating
regions. However, in other cases, like the driven cavity problem or an aero-
dynamic profile, where the walls play an important role in noise generation,
the interaction between the RANS and LES models in DDES is of paramount
importance. For example, the turbulent wake behind a car is known to be one
of the main noise contributors at high-speed regimes. In the recent years, it has
been shown that correct shielding behavior within DDES is mandatory, as oth-
erwise, the LES mode could generate unphysical oscillations, leading to purely
numerical noise. Improved DDES has been successfully used within the DES
family in the context of wall-modelled Large-Eddy Simulations. Consequently,
it should be interesting to analyze if this success can also be extrapolated to
CAA simulations, as acoustics are extremely sensitive to the solution provided
by the hydrodynamic simulation.
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Regarding noise propagation methods, the present thesis only presents results
using analytical transport methods, more precisely using the FWH equation.
Nonetheless, the FWH equation can only deal with free propagation phenom-
ena, which is not the usual situation. This could be solved by using a more
general formulation of the Green function which considers the presence of
additional boundary conditions, i.e., solid obstacles. However, from a math-
ematical point of view, this is extremely complex; this can be extrapolated
to the vast majority of analytical transport methods, as the free-space Green
function is used. Consequently, if analytical transport methods cannot deal
with more complex situations involving noise reflections, numerical transport
methods should be considered. At the beginning of this thesis, some prelimi-
nary work was done in incompressible-based, LPCE by Seo and Moon [5] and
compressible-based transport methods, APE systems by Ewert and Scröder [6].
Including these methods within a CAA solver would allow studying flows
where the acoustic-near field does not follow a free-space-like propagation.

Linked with the first item in this section, i.e., supersonic phenomena, but
regarding noise propagation, non-linear wave propagation is another aspect
that should be revisited. FWH equation, and basically all the equations derived
from Lighthill’s equation, is an inhomogeneous wave equation based on the
d’Alembert operator: 2ϕ. Nonetheless, when the amplitudes of the acoustic
waves become so large that they distort when traveling, other modelizations,
like Westervelt or KZK, which introduce the concept of noise diffusivity,
should be considered.
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