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The CTTC research group
Heat and Mass Transfer Technological Center (Catalan: Centre Tecnològic
de Transferència de Calor) has more than 20 years experience on CFD:

Fundamental research on numerical methods, fluid dynamics and
heat and mass transfer phenomena.
Applied research on thermal and fluid dynamic optimization of
thermal system and equipment.

Preserving operator symmetries? Physical, numerical and computational implications
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CTTC’s historical background in HPC

Preserving operator symmetries? Physical, numerical and computational implications
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Let’s begin with some math...

 

⟨a|b ⟩ :=∫
Ω

abdΩ         C (u⃗ ,ϕ) :=(u⃗⋅∇)ϕ

Notation:

⟨∇⋅⃗a|ϕ⟩=−⟨ a⃗|∇ ϕ⟩

⟨∇ 2
f|g ⟩=−⟨∇ f|∇ g⟩=⟨ f|∇2

g⟩

⟨C (u⃗ ,ϕ1)|ϕ2⟩=−⟨C (u⃗ ,ϕ2)|ϕ1⟩     if  ∇⋅⃗u=0

⟨∇×a⃗|⃗b ⟩=⟨ a⃗|∇×b⃗ ⟩

REMEMBER : we always assume no contribution from

domain boundary, ∂Ω

Preserving operator symmetries? Physical, numerical and computational implications
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Let’s begin with some math...

 

⟨∇⋅⃗a|ϕ⟩=−⟨ a⃗|∇ ϕ⟩

⟨a|b⟩ :=∫
Ω

ab dΩ         

REMEMBER : we always assume no contribution from

domain boundary, ∂Ω

REMAINDER!!!

∇⋅(ϕ a⃗)=ϕ∇⋅⃗a+ a⃗⋅∇ ϕ

∫
Ω

∇⋅(ϕ a⃗)=⟨ϕ|∇⋅⃗a⟩+⟨ a⃗|∇ ϕ⟩

∫
∂Ω

(ϕ a⃗)⋅⃗ndS=⟨ϕ|∇⋅⃗a⟩+⟨ a⃗|∇ ϕ⟩=0

Proof:

Preserving operator symmetries? Physical, numerical and computational implications
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Operator symmetries and conservation

 

⟨ u⃗|u⃗ ⟩                 Kinetic energy (in 2D/3D)

⟨∇⋅⃗a|ϕ⟩=−⟨ a⃗|∇ ϕ⟩

⟨∇ 2
f|g ⟩=−⟨∇ f|∇ g⟩=⟨ f|∇2

g⟩

⟨C (u⃗ ,ϕ1)|ϕ2⟩=−⟨C (u⃗ ,ϕ2)|ϕ1⟩     if  ∇⋅⃗u=0

⟨∇×a⃗|⃗b ⟩=⟨ a⃗|∇×b⃗ ⟩

REMAINDER!!!

1

2

d ⟨ u⃗|⃗u⟩
dt

=⟨
∂ u⃗

∂ t
|⃗u⟩=−⟨C (u⃗ , u⃗)|⃗u ⟩+ν ⟨∇ 2

u⃗|u⃗ ⟩−⟨∇ p|⃗u⟩

=−ν⟨∇ u⃗|∇ u⃗ ⟩=−ν‖∇ u⃗‖2≤0

=−ν⟨∇×∇×u⃗|u⃗ ⟩=−ν‖ω‖2≤0

If ν=0 , then ⟨ u⃗|⃗u ⟩  remains constant!!!

Also, if the flow is irrotational, ω⃗=0⃗ . Remember Bernoulli!

ADDITIONAL REMAINDER!!!

∇2
u⃗=∇(∇⋅⃗u)−∇×∇×u⃗

Preserving operator symmetries? Physical, numerical and computational implications
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From Calculus to Algebra (C2A)

 

⟨a|b ⟩ :=∫
Ω

abdΩ  ∈ℝ

⟨a
h
|b

h
⟩ :=a

h

T Ω b
h
 ∈ℝ

1

4

2 3

5 6

Ω=(
Ω

1
0 0 0 0 0

0 Ω
2

0 0 0 0

0 0 Ω
3

0 0 0

0 0 0 Ω
4

0 0

0 0 0 0 Ω
5

0

0 0 0 0 0 Ω
6

)a
h
=(

a
1

a
2

a
3

a
4

a
5

a
6

) b
h
=(

b
1

b
2

b
3

b
4

b
5

b
6

)
Preserving operator symmetries? Physical, numerical and computational implications
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From Calculus to Algebra (C2A)
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From Calculus to Algebra (C2A)
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From Calculus to Algebra (C2A)
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From Calculus to Algebra (C2A)
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From Calculus to Algebra (C2A)
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From Calculus to Algebra (C2A)
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From Calculus to Algebra (C2A)
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From Calculus to Algebra (C2A)
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Algebraic operators
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Algebraic operators: basic properties

 

Let us consider square matrices, A∈ℝn×n
 :

Eigenvalues&eigenvectors: A v⃗ i=λ i v⃗ i ,  i=1,. .., n

...or equivalently  ( A−λ I ) v⃗= 0⃗

|A−λ I|=0     characteristic equation of A

A=
1

2
( A+A

T )
⏟

symmetric

+
1

2
(A−A

T )
⏟
skew−symmetric

Preserving operator symmetries? Physical, numerical and computational implications
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Algebraic operators: basic properties

 

Symmetric matrices, A=A
T

:

A v⃗ i=λ i v⃗ i ,    λ i∈ℝ   v⃗ i∈ℝn

Λ=P
−1

AP   where   P=( v⃗ 1 v⃗2 ... v⃗n )

Λ=(1 0

0 1/2)   x⃗=( 3

16 )
x⃗ ,Λ x⃗ ,Λ 2

x⃗ ,Λ 3
x⃗ ,.. . y

x

Example:

It resembles a diffusive process!

Preserving operator symmetries? Physical, numerical and computational implications
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Algebraic operators: basic properties

 

Skew-symmetric matrices, A=−A
T

:

A v⃗ i=λ i v⃗ i ,    λ i∈I   v⃗ i∈ I
n

A=( 0 1

−1 0)   x⃗=(3

2)
y

x
R=(cos θ −sinθ

sinθ cos θ) It is a 90º rotation!

Example: x⃗ , A x⃗ , A
2
x⃗ , A

3
x⃗ ,.. .

Preserving operator symmetries? Physical, numerical and computational implications
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Algebraic operators: basic properties

 

Skew-symmetric matrices, A=−A
T

:

A v⃗ i=λ i v⃗ i ,    λ i∈I   v⃗ i∈ I
n

y

x

And it is always a 90º rotation!!!

x⃗
T
A x⃗=0 ,   ∀ x⃗∈ℝ

n

3

6

5
1

2

4

Preserving operator symmetries? Physical, numerical and computational implications
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Reminder: symmetry and conservation of kinetic energy

 

⟨ u⃗|u⃗ ⟩                 Kinetic energy (in 2D/3D)

⟨∇⋅⃗a|ϕ⟩=−⟨ a⃗|∇ ϕ⟩

⟨∇ 2
f|g ⟩=−⟨∇ f|∇ g⟩=⟨ f|∇2

g⟩

⟨C (u⃗ ,ϕ1)|ϕ2⟩=−⟨C (u⃗ ,ϕ2)|ϕ1⟩     if  ∇⋅⃗u=0

⟨∇×a⃗|⃗b ⟩=⟨ a⃗|∇×b⃗ ⟩

REMAINDER!!!

1

2

d ⟨ u⃗|⃗u⟩
dt

=⟨
∂ u⃗

∂ t
|⃗u⟩=−⟨C (u⃗ , u⃗)|⃗u ⟩+ν ⟨∇ 2

u⃗|u⃗ ⟩−⟨∇ p|⃗u⟩

=−ν⟨∇ u⃗|∇ u⃗ ⟩=−ν‖∇ u⃗‖2≤0

=−ν⟨∇×∇×u⃗|u⃗ ⟩=−ν‖ω‖2≤0

If ν=0 , then ⟨ u⃗|⃗u ⟩  remains constant!!!

Also, if the flow is irrotational, ω⃗=0⃗ . Remember Bernoulli!

ADDITIONAL REMAINDER!!!

∇2
u⃗=∇(∇⋅⃗u)−∇×∇×u⃗

Preserving operator symmetries? Physical, numerical and computational implications
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Algebraic operators

 

∂ u⃗

∂ t
+( u⃗⋅∇) u⃗=ν∇ 2

u⃗−∇ p       ∇⋅⃗u=0

Ω
d uh

d t
+C (uh)uh=D uh−ΩG ph      M uh=0h

⟨a|b ⟩ :=∫
Ω

abdΩ

⟨ah|bh⟩ :=ah

T Ω bh

1

2

d ⟨uh|uh ⟩

dt
=uh

T Ω
d uh

dt
=−uh

T
C(uh)uh+uh

T
Duh−uh

T ΩG ph

=uh

T
D uh≤0

1

2

d ⟨ u⃗|⃗u⟩
dt

=⟨
∂ u⃗

∂ t
|⃗u⟩=−⟨C (u⃗ , u⃗)|⃗u ⟩+ν ⟨∇ 2

u⃗|u⃗ ⟩−⟨∇ p|⃗u⟩

=−ν⟨∇ u⃗|∇ u⃗ ⟩=−ν‖∇ u⃗‖2≤0

=−ν⟨∇×∇×u⃗|u⃗ ⟩=−ν‖ω‖2≤0

REMAINDER!!!

Let's consider the time evolution of 1/2 ⟨uh|uh⟩ ...

...mimicking the properties

of continuous NS eqs leads to

Numerical stability ! ! !

Preserving operator symmetries? Physical, numerical and computational implications
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Algebraic operators

 

1

2

d ⟨uh|uh ⟩

dt
=uh

T Ω
d uh

dt
=−uh

T
C(uh)uh+uh

T
Duh−uh

T ΩG ph

=uh

T
D uh≤0  ,     if M uh=0h , ∀uh , ph

1

2

d ⟨ u⃗|⃗u⟩
dt

=⟨
∂ u⃗

∂ t
|⃗u⟩=−⟨C (u⃗ , u⃗)|⃗u ⟩+ν ⟨∇2

u⃗|u⃗ ⟩−⟨∇ p|⃗u⟩

=−ν⟨∇ u⃗|∇ u⃗ ⟩=−ν‖∇ u⃗‖2≤0

=−ν⟨∇×∇×u⃗|u⃗ ⟩=−ν‖ω‖2≤0

REMAINDER!!!
⟨∇⋅⃗a|ϕ⟩=−⟨ a⃗|∇ ϕ⟩

⟨∇2
f|g ⟩=−⟨∇ f|∇ g⟩=⟨ f|∇2

g⟩

⟨C (u⃗ ,ϕ1)|ϕ2⟩=−⟨C (u⃗ ,ϕ2)|ϕ1⟩     if  ∇⋅⃗u=0

⟨∇×a⃗|⃗b ⟩=⟨ a⃗|∇×b⃗ ⟩

REMAINDER!!!

uh

T
C (uh)uh=0

uh

T ΩG ph=0

C (uh)=−C
T (uh)

ΩG=−M
T

uh

T
D uh≤0 D=D

T
  def-

Preserving operator symmetries? Physical, numerical and computational implications



CFD and HPC at CTTC Symmetry-preserving discretization Algebra-based HPC implementation Conclusions

Algebraic operators
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From Calculus to Algebra (C2A)

 

⟨C (u⃗ ,ϕ1)|ϕ2⟩=−⟨C (u⃗ ,ϕ2)|ϕ1⟩

⟨∇⋅⃗a|ϕ⟩=−⟨ a⃗|∇ ϕ⟩

⟨∇2
f|g ⟩=⟨ f|∇2

g ⟩

uh
T
C (uh)uh=0

uh
T ΩG ph=0

C (uh)=−C
T (uh)

ΩG=−M
T

uh

T
D uh≤0 D=D

T
  def-

∂ u⃗

∂ t
+( u⃗⋅∇) u⃗=ν∇ 2

u⃗−∇ p ;   ∇⋅⃗u=0 Ω
d uh

d t
+C (uh)uh=D uh−ΩG ph ;  M uh=0h

⟨a|b ⟩ :=∫
Ω

abdΩ ⟨ah|bh⟩ :=ah

T Ω bh

C (uh)=−C
T (uh)

ΩG=−M
T

D=D
T

  def-

⟨∇⋅⃗a|ϕ⟩=−⟨ a⃗|∇ ϕ⟩

⟨∇ 2
f|g ⟩=−⟨∇ f|∇ g⟩=⟨ f|∇2

g⟩

⟨C (u⃗ ,ϕ1)|ϕ2⟩=−⟨C (u⃗ ,ϕ2)|ϕ1⟩     if  ∇⋅⃗u=0

⟨∇×a⃗|⃗b ⟩=⟨ a⃗|∇×b⃗ ⟩

REMAINDER!!!

C2A
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A fully-conservative discretization is presented in this paper. The same principles followed

by Verstappen and Veldman (2003) [3] are generalized for unstructured meshes. Here, a

collocated-mesh scheme is preferred over a staggered one due to its simpler form for such

meshes. The basic idea behind this approach remains the same: mimicking the crucial

symmetry properties of the underlying differential operators, i.e., the convective operator

is approximated by a skew-symmetric matrix and the diffusive operator by a symmetric,

positive-definite matrix. A novel approach to eliminate the checkerboard spurious modes

without introducing any non-physical dissipation is proposed. To do so, a fully-conservative

regularization of the convective term is used. The supraconvergence of the method is

numerically showed and the treatment of boundary conditions is discussed. Finally, the

new discretization method is successfully tested for a buoyancy-driven turbulent flow in a

differentially heated cavity.

 2013 Elsevier Inc. All rights reserved.

1. Introduction

We consider the simulation of turbulent, incompressible flows of Newtonian fluids. Under these assumptions, the dimen-

sionless governing equations in primitive variables are

∂u

∂t
+ (u · ∇)u =

1

Re
�u − ∇p, (1a)

∇ · u = 0, (1b)

where Re is the dimensionless Reynolds number. The basic physical properties of the Navier–Stokes (NS) equations can be

deduced from the symmetries of the differential operators (see [1], for instance). In a discrete sense, it suffices to retain

such operator symmetries to preserve the analogous (invariant) properties of the continuous equations. It may be argued,

especially if the method is going to be used on unstructured meshes, that accuracy may need to take precedence over

the properties of the operators. However, in this work, we have adopted the same philosophy followed by Verstappen and

Veldman [2,3]: symmetries of the convective and diffusive operators are critical to the dynamics of turbulence and must be

preserved.
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CTTC’s historical background in HPC
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Divergence of HPC systems

The progress in hardware architectures is leading to an increasing hybridisation of high-

performance computing (HPC) systems, making the design of computing applications a rather 

complex problem, and is affecting most of the fields that rely on large-scale simulations.

Preserving operator symmetries? Physical, numerical and computational implications
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Divergence of HPC systems
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Fully-portable implementation models

Is it necessary to use the new hardware architectures?
In our opinion, yes. New hardware is designed to overcome the power
constraint in the context of the exascale challenge.

Do the traditional implementation models facilitate code portability?
In our opinion, no. Legacy codes were not designed for providing
portability simply because it was not necessary.

Do we need to change the way we look at scientific computing in general?
In our opinion, yes. Making an effort to design modular applications
composed of a reduced number of independent and well-defined code
blocks helps to reduce the generation of errors and facilitates debugging and
portability.

Preserving operator symmetries? Physical, numerical and computational implications
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My basic blocks: matrices and vectors!
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× × 0 × 0 0
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Fully-portable implementation models

Algebra-based implementations only rely on a reduced number of universal algebraic kernels and data 

structures, allowing the use of standard optimised libraries and, therefore, providing portability. As a 

counterpart, the formulation of the numerical method becomes more complex and could even lead to an 

increase in the number of operations.

Stencil-based

Algebra-based

Traditionally, the stencil-based implementations are used by the scientific computing community. These 

implementations arise straightforward from the formulation of the numerical method. However, they re-

quire specific stencil sweeps and data structures for each numerical method.

Preserving operator symmetries? Physical, numerical and computational implications
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The HPC2 fully-portable, algebra-based framework
The HPC2 (Heterogeneous Portable Code for HPC) is a fully-portable,
algebra-based framework with a multilevel MPI+OpenMP+OpenCL+CUDA
parallelisation. Naturally provides modularity and portability.

Data and Kernel 

Factory

Data and Kernel

Factory
The Data and Kernel Factory 

layer holds the data containers 

and the computing kernels.

  SpMV(A, u, y)
  axpy(u, v, y)

  ddot(u, v)

Its layout, inspired in the 

abstract factory design 

pattern, employs virtual 

objects for minimising the 

dependencies. Thus, it allows 

adding a new implementation 

of data containers and compu-

ting kernels easily.

Preserving operator symmetries? Physical, numerical and computational implications
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The HPC2 fully-portable, algebra-based framework
The HPC2 (Heterogeneous Portable Code for HPC) is a fully-portable,
algebra-based framework with a multilevel MPI+OpenMP+OpenCL+CUDA
parallelisation. Naturally provides modularity and portability.

Algebra

Algebra

The Algebra layer contains 

classes and objects that mimic 

algebraic structures. They 

wrap data containers and com-

puting kernels from  the 

abstract factories, which 

makes them entirely indepen-

dent of the implementation.

  Set

  VectorSpace

  DifferentialManifold

Differential operators (i.e. 

DIV, GRAD) can be generated 

by means of whatever numeri-

cal method such as FEM, 

FVM. They’re just matrices.

Data and Kernel 

Factory
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The HPC2 fully-portable, algebra-based framework
The HPC2 (Heterogeneous Portable Code for HPC) is a fully-portable,
algebra-based framework with a multilevel MPI+OpenMP+OpenCL+CUDA
parallelisation. Naturally provides modularity and portability.

M
odels and Solvers

Models and Solvers

The Models and Solvers layer 

engages the algebraic objects 

for generating both physical 

models and solver methods.

  NavierStokes

  RungeKutta

  ConjugateGradient

  

Recall that the numerical 

method (i.e. FEM, FVM, 

FDM) is used only at the 

preprocessing stage for buil-

ding the matrices.

Algebra

Data and Kernel 

Factory
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The HPC2 fully-portable, algebra-based framework
The HPC2 (Heterogeneous Portable Code for HPC) is a fully-portable,
algebra-based framework with a multilevel MPI+OpenMP+OpenCL+CUDA
parallelisation. Naturally provides modularity and portability.

Applications
Applications

The Application layer is where 

the user can combine models 

and solvers to set-up the case 

for running a simulation.

  DrivenCavity
  RisingBubble

  FallingFilm

In summary, everything that 

can be expressed by means of 

algebraic structures such as 

Matrix and Vector, it can be 

run within this framework.

  

M
odels and Solvers

Algebra

Data and Kernel 

Factory
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A performance overview of the HPC2

Study case 1
Single-device performance of the SpMV kernel vs the matrix size on an Intel
Xeon E5649 (left) and Nvidia M2090 (right) for a matrix derived from a
symmetry-preserving discretisation1 on an unstructured hex-dominant mesh.

1F.X. Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids,
J.Comp.Phys., 258, 246-267, 2014.
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In memory-bounded applications, 

the GPU performance improves 

with the size of the matrix, in 

contrast with that of the CPU. 

Hence, the speedup depends on 

both the matrix size and the 

memory bandwidth.

1F.X. Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids,
J.Comp.Phys., 258, 246-267, 2014.
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A performance overview of the HPC2

Study case 2
Single-device performance comparison of the algebraic DNS algorithm using
the symmetry-preserving discretisation2 on an unstructured hex-dominant mesh of
1M cells.

2F.X. Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids,
J.Comp.Phys., 258, 246-267, 2014.
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A performance overview of the HPC2

Study case 3
Heterogeneous performance study of the SpMV kernel on a hybrid node
equipped with an Intel E5 2697v3 and an Nvidia Tesla K40 for a matrix derived
from a symmetry-preserving discretisation3 on an unstructured hex-dominant
mesh of 10M cells. On the left, the single-node performance study. On the right,
the strong-scaling study.
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3F.X. Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids,
J.Comp.Phys., 258, 246-267, 2014.
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a b s t r a c t 

The variety of computing architectures competing in the exascale race makes the portability of codes of 
major importance. In this work, the HPC 2 code is presented as a fully-portable, algebra-based framework 
suitable for heterogeneous computing. In its application to CFD, the algorithm of the time-integration 
phase relies on a reduced set of only three algebraic operations: the sparse matrix-vector product, the 
linear combination of vectors and the dot product. This algebraic approach combined with a multilevel 
MPI + OpenMP + OpenCL parallelization naturally provides portability. The performance has been studied 
on different architectures including multicore CPUs, Intel Xeon Phi accelerators and GPUs of AMD and 
NVIDIA. The multi-GPU scalability is demonstrated up to 256 devices. The heterogeneous execution is 
tested on a CPU + GPU hybrid cluster. Finally, results of the direct numerical simulation of a turbulent flow 

in a 3D air-filled differentially heated cavity are presented to show the capabilities of the HPC 2 dealing 
with large-scale CFD simulations. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Massively-parallel devices of various architectures are being 
adopted by the newest supercomputers in order to overcome the 
actual power constraint in the context of the exascale challenge 
[1] . This trend is being reflected in most of the fields that rely 
on large-scale simulations such as computational fluid dynam- 
ics (CFD). Examples of CFD applications using accelerators can 
be found, for instance, in [2] (single-GPU, portable, OpenCL), [3–
5] (multi-GPU, vendor-locked, CUDA) and [6] (petascale, multi-GPU, 
portable, CUDA + OpenCL). 

Although the majority of problems in the field of mathematical 
physics involve sparse matrix and vector operations and hence al- 
gorithms with very low arithmetic intensity, most of the emerging 
HPC architectures are FLOP-oriented, i.e. FLOPS to memory band- 
width ratio is very high. Consequently, the achievable performance 
is usually reduced to a small fraction of the peak performance as 
proven by the HPCG Benchmark [7] results. 

Therefore, in the design of large-scale simulation tools, soft- 
ware portability and efficiency are of crucial importance. The com- 
puting operations that form the algorithm, so-called kernels, must 

∗ Corresponding author. 
E-mail addresses: xavier@cttc.upc.edu (X. Álvarez), andrey@cttc.upc.edu (A. 

Gorobets), xavi@cttc.upc.edu (F.X. Trias). 

be compatible with distributed- and shared-memory MIMD par- 
allelism and, more importantly, with stream processing, which is 
a more restrictive parallel paradigm. Consequently, the fewer the 
kernels of an application, the easier it is to provide portability. Fur- 
thermore, if the majority of kernels represent linear algebra op- 
erations, then standard optimized libraries ( e.g. ATLAS, clBLAST) 
or specialized in-house implementations can be used and easily 
switched. 

In this context, we proposed in a previous work [8] a portable 
algebraic implementation approach for direct numerical simula- 
tions (DNS) and large eddy simulation (LES) of incompressible tur- 
bulent flows on unstructured meshes. Roughly, the implementation 
consists in replacing classical stencil data structures and sweeps by 
algebraic data structures and kernels. As a result, the algorithm re- 
lies on a reduced set of only three algebraic operations: the sparse 
matrix-vector product ( SpMV ), the linear combination of vectors 
( axpy ) and the dot product ( dot ). 

On the other hand, the hybridization of HPC systems makes the 
design of simulation codes a rather complex problem. Heteroge- 
neous implementations such as an MPI + OpenMP + OpenCL paral- 
lelization [9] can target a wide range of architectures and combine 
different kinds of parallelism. Hence, they are becoming increas- 
ingly necessary in order to engage all available computing power 
and memory throughput of CPUs and accelerators. Examples of 
CFD codes capable of heterogeneous computing can be found, for 

https://doi.org/10.1016/j.compfluid.2018.01.034 
0045-7930/© 2018 Elsevier Ltd. All rights reserved. 
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Concluding remarks

Symmetry-preserving discretization is based on a very reduced set
of operators (matrices). The rest follow straightforwardly by
preserving fundamental symmetries.
We consider that it forms a solid basis for testing sub-grid scale
models (details in next talk).
Preserving operators symmetries leads to numerical stability (in the
L2-norm sense).
An algebra-based approach naturally provides with modularity and
portability.

Takeaway message:
Differential calculus and linear algebra are intimately connected.
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Thank you for your attention
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