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Motivation & background
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Motivation

Research question:

o Can we find a (nonlinear) SGS heat flux model with good physical
and numerical properties, such that we can obtain satisfactory
predictions for a turbulent Rayleigh-Bénard convection?

DNS of an air-filled Rayleigh-Bénard convection at Ra = 1019

1F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. On the evolution of flow topology in
turbulent Rayleigh-Bénard convection, Physics of Fluids, 28:115105, 2016.
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Motivation

And of course... saving the planet!
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Eddy-viscosity models for LES

i+ (@-Vu=Va-Vp-V-7(@) ; V-T1=0
eddy-viscosity — 7 (U) = —2v;:5(7)

2F.X.Trias, D.Folch, A.Gorobets, A.Oliva. Building proper invariants for
eddy-viscosity subgrid-scale models, Physics of Fluids, 27: 065103, 2015.
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3F.X.Trias, A.Gorobets, M.Silvis, R.Verstappen, A.Oliva. A new subgrid characteristic
length for turbulence simulations on anisotropic grids, Phys.Fluids, 26:115109, 2017.
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Building proper invariants for LES models
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Building proper invariants for LES models

i+ (@-Vu=Va-Vp-V-7(@) ; V-T1=0
eddy-viscosity — 7 (U) = —2v;:5(7)

. most of them rely on differential operators that are based on the
combination of invariants of a symmetric second-order tensor derived
from G = V.
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Building proper invariants for LES models
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eddy-viscosity — 7 () = —21;5(0)

. most of them rely on differential operators that are based on the

combination of invariants of a symmetric second-order tensor derived
from G = V.

Therefore, they can be characterized by 5 basic invariants

{Qs, Rs, Qg, Rg, V?}
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Building proper invariants for LES models

i+ (@-Vu=Va-Vp-V-7(@) ; V-T1=0
eddy-viscosity — 7 () = —21;5(0)
. most of them rely on differential operators that are based on the

combination of invariants of a symmetric second-order tensor derived
from G = V.

Therefore, they can be characterized by 5 basic invariants

{Qs, Rs, Qg, Rg, V?}

Notation: given a second-order tensor A

First invariant: Pa = tr(A)
Second invariant:  Qu = 1/2{tr?(A) — tr(A?)}
Third invariant: ~ Ra = det(A)
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Building proper invariants for LES models

i+ (@-Vu=Va-Vp-V-7(@) ; V-T1=0
eddy-viscosity — 7 () = —21;5(0)

. most of them rely on differential operators that are based on the

combination of invariants of a symmetric second-order tensor derived
from G = V.

Therefore, they can be characterized by 5 basic invariants

{Qs, Rs, Qg, Rg, V?}

Notation:
V2 = 4(tr(5292) — 2QSQQ),

where S =1/2(G+G")and Q =1/2(G—GT).
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A unified framework for eddy-viscosity models

{Qs, Rs, Qg, Rg, V?}
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A unified framework for eddy-viscosity models

{Qs, Rs, Qg, Rg, V?}

Smagorinsky model P = (Cs6)?|S(@)| = 2(Cs0)?(—Qs)*?,
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A unified framework for eddy-viscosity models

{Qs, Rs, Qg, Rg, V?}

Smagorinsky model ~ 1>™% (Cs6)?|S(@)| = 2(Cs0)?(—Qs)*?,

Rs|
ce(s?i' 5L
(V)—QS

Verstappen's model vye
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A unified framework for eddy-viscosity models

{Qs, Rs, Qg, Rg, V?}

Smagorinsky model 1™ = (Cs6)?|S(T)| = 2(Cs8)?(—Qs)Y/?,
2 IRs|
—Qs’
(V2/2+2Q%/3)%?
(—2Qs)5/2 + (V2/2 + 2Q%/3)5/4

Verstappen's model vYe = (Cyd)

WALE model vV = (Cyd)?

Advanced models for large-eddy simulation of turbulent flows



Building new eddy-viscosity models
0®00000000

A unified framework for eddy-viscosity models

{Qs, Rs, Qg, Rg, V?}

Smagorinsky model 1™ = (Cs6)?|S(T)| = 2(Cs8)?(—Qs)Y/?,

R
Verstappen's model vye = (Cve5)2|5|’
— XS
2 2 /213/2
W 2 (V</2+2Q%/3)
WALE model  ve" = (Cwo)" e (20 4 202/3)574"
G
V2 + Q2 1/2
Vv n's model Vi — (Cyd)? <G> :
rema vy (Cvr0) 2(Qn— Qo)
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A unified framework for eddy-viscosity models

{Qs, Rs, Qg, Rg, V?}

Smagorinsky model 1™ = (Cs6)?|S(T)| = 2(Cs8)?(—Qs)Y/?,

R
Verstappen's model vye = (Cve5)2|5|’
— XS
2 2 /213/2
W 2 (V</2+2Q%/3)
WALE model vy = (Cw9) 30057 1 (V22 1 2 Q2 35
G
V2 + Q2 1/2
V 's model Vi — (Cy,6)2 <G> :
o T -9
Sigma model vy = (C05)2U3(01 — 022(02 ~ 03)’
01

where o; = v/A; and )\; is an eigenvalue of GG .
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Near-wall behavior

{Qs, Rs, Qg, Rg, V?}
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Near-wall behavior

{Qs, Rs, Qg, Rg, V?}

Invariants

Qg Re Qs Rs %% Qq

Wall-behavior
Units

O(y*) 0(?) 0@u°% okhH) ok o1
[T=2] (T3] [T72] [T [T [T77]
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Near-wall behavior

{Qs, Rs, Qg, Rg, V?}

Invariants
Q¢ R¢ Qs Rs % Qo
Wall-behavior | O(y?) O(y3) 0(°% oY 0u°% 0O

Units [ (T2 (T3] (T2 (T3] (T4 [T
Models

Smagorinsky WALE Vreman's Verstappen's o-model

Wall-behavior O(y%) oky® oW o(yh o(y3)
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Near-wall behavior

{Qs, Rs, Qg, Rg, V?}

Invariants
Q¢ R¢ Qs Rs % Qo
Wall-behavior | O(y?) O(y3) 0(°% oY 0u°% 0O

Units [ (T2 (T3] (T2 (T3] (T4 [T
Models

Smagorinsky WALE Vreman's Verstappen's o-model

Wall-behavior O(y%) oky® oW o(yh o(y3)

Hence, new models can be derived by imposing restrictions on the
differential operators they are based on.
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Building proper invariants for LES models*

For instance, let us consider models that are based on the invariants of the
tensor GGT

ve = (Cud)? Pl Q. Reer

4F X.Trias, D.Folch, A.Gorobets, A.Oliva. Building proper invariants for
eddy-viscosity subgrid-scale models, Physics of Fluids, 27: 065103, 2015.
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Building proper invariants for LES models*

For instance, let us consider models that are based on the invariants of the
tensor GGT

ve = (Cud)? Pl Q. Reer

Pcer Qg Rger
Formula 2(Qe—Qs) V?+QZ RZ

4F X.Trias, D.Folch, A.Gorobets, A.Oliva. Building proper invariants for
eddy-viscosity subgrid-scale models, Physics of Fluids, 27: 065103, 2015.
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Building proper invariants for LES models*

For instance, let us consider models that are based on the invariants of the
tensor GGT
2
ve = (Cyo) PZGTQ"GGT CeTs

Pgcr Qser  Rger

Formula 2(Qu—Qs) VZP+Qz R:
Wall-behavior ~ O(y°) O(y?) 0O°
Units [T—2] [T [T7°]

4F X.Trias, D.Folch, A.Gorobets, A.Oliva. Building proper invariants for
eddy-viscosity subgrid-scale models, Physics of Fluids, 27: 065103, 2015.
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Building proper invariants for LES models*

For instance, let us consider models that are based on the invariants of the
tensor GGT
2
ve = (Cyo) PZGTQqGGT CeTs

Pgcr Qser  Rger
Formula 2(Qa—Qs) V2+QZ RZ
Wall-behavior ~ O(y°) O(y?)  O(y®)
Units [T—2] [T [T7°]
—6r—4q—2p = —1; 6r+2q =s,

where s is the slope for the asymptotic near-wall behavior, i.e. O(y®).

4F X.Trias, D.Folch, A.Gorobets, A.Oliva. Building proper invariants for
eddy-viscosity subgrid-scale models, Physics of Fluids, 27: 065103, 2015.
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Building proper invariants for LES models

Solutions: q(p,s) = (1—5s)/2—p and r(p,s) = (2s—1)/6+ p/3

q.r
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Building proper invariants for LES models

Solutions: q(p,s) = (1—5s)/2—p and r(p,s) = (2s—1)/6+ p/3

3
2
q(p)
1 .
ER 1)
a1k
slope=3 ——
2t
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Building proper invariants for LES models

Solutions: q(p,s) = (1—5s)/2—p and r(p,s) = (2s—1)/6+ p/3

3
2
qp)
1 .
0 1)
a1k
slope=3
27 S3QP model =
S3RP model ©
3t S3RQ model 4
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
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Building proper invariants for LES models

Solutions: q(p,s) = (1—5s)/2—p and r(p,s) = (2s—1)/6+ p/3

q.r

Vreman’s model &

slope=3
27 S3QP model =
S3RP model ©
3t S3RQ model 4
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
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Building proper models for LES

Hence, a family of new eddy-viscosity model for LES

i+ (T-V)ai=Vu-Vp-V-7(@) ; V-u=0
eddy-viscosity — 7 (U) = —2v:5(7)
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Building proper models for LES

Hence, a family of new eddy-viscosity model for LES

i+ (T-V)ai=Vu-Vp-V-7(@) ; V-u=0
eddy-viscosity — 7 (U) = —2v:5(7)

has been derived by imposing proper conditions on the invariant(s)

Vtsmp = (Cs3qp5)2p_5/2Q3/2

GGT XGGT’
S3RP 2p—1 1/2
Vy = (Cs3rp5) PGGTRG/GT’
S3R 2 -1 p5/6
Vi Q= (Cs3rq5) QGGTRGGT'
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Buiding proper models for LES

Decaying isotropic turbulence with Cs3pq = 0.572, Cs3pr = 0.709, Co3q, = 0.762

Comparison with classical Comte-Bellot & Corrsin (CBC) experiment.
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Turbulent channel flow

Results

Re, = 395 DNS Moser et al. LES 323
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Turbulent channel flow

Near-wall behavior
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Building proper invariants for eddy-viscosity subgrid-scale
models

F. X. Trias," D. Folch,'®) A. Gorobets,2¢ and A. Oliva’¥

'Heat and Mass Transfer Technological Center, Technical University of Catalonia, ETSEIAT,
/Colom 11, 08222 Terrassa, Spain

*Keldysh Institute of Applied Mathematics, Miusskaya Sq. 4A, Moscow 125047, Russia

(Received 31 March 2015; accepted 16 May 2015; published online 2 June 2015)

Direct si ions of the i P i Navi tokes ions are limited to
relatively low-Reynolds numbers. Hence, dynamically less complex mathematical
formulations are necessary for coarse-grain simulations. Eddy-viscosity models for
large-eddy simulation is probably the most popular example thereof: they rely
on differential operators that should properly detect different flow configurations
(laminar and 2D flows, near-wall behavior, transitional regime, etc.). Most of them
are based on the combination of invariants of a symmetric tensor that depends on the
gradient of the resolved velocity field, G = Va. In this work, models are presented
within a framework consisting of a 5D phase space of invariants. In this way, new
models can be constructed by imposing appropriate restrictions in this space. For
instance, considering the three invariants Pggr, Qggr. and Rggr of the tensor GG,
and imposing the proper cubic near-wall behavior, i.e., v. = O(y?), we deduce that
the eddy-viscosity is given by v, = (Cy3pqrA)> PGG szngz,gsm/x Moreover, only
Rggr-dependent models, i.e., p > =5/2, switch off for 2D flows. Finally, the model
constant may be related with the Vreman’s model constant via Cy3,q, = \/ECV, ~
0.458; this guarantees both numerical stability and that the models have less or
equal dissipation than Vreman’s model, i.e., 0 < v, < vY”. The performance of
the proposed models is successfully tested for decaying isotropic turbulence and a
turbulent channel flow. The former test-case has revealed that the model constant,
Cs3pqr» should be higher than 0.458 to obtain the right amount of subgrid-scale dissi-
pation, i.e., Cy3pq = 0.572 (p = =5/2), Cy3pr = 0.709 (p = —1), and Cy3,, = 0.762
(p =0).© 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921817]
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Subgrid characteristic length for LES: state of the art

i+ (@-Vu=Va-Vp-V-7(@) ; V-T1=0
eddy-viscosity — 7 () = —21;5(0)

Ve = (Cmd)? Dm ()
Dm(u) — Smagorinsky (1963), WALE (1999), Vreman (2004),
QR-model (2011), o-model (2011), S3PQR (2015)...

Cn — Germano's dynamic model (1991), Lagrangian dynamic (1995),
Global dynamic approach (2006)

SF.X.Trias, A.Gorobets, M.Silvis, R.Verstappen, A.Oliva. A new subgrid characteristic
length for turbulence simulations on anisotropic grids, Phys.Fluids, 26:115109, 2017.

Advanced models for large-eddy simulation of turbulent flows



A new length scale
000000000000

Subgrid characteristic length for LES: state of the art

i+ (@-Vu=Va-Vp-V-7(@) ; V-T1=0
eddy-viscosity — 7 () = —21;5(0)

ve = (Cnd)? D (T0)

Dm(u) — Smagorinsky (1963), WALE (1999), Vreman (2004),
QR-model (2011), o-model (2011), S3PQR (2015)...
Cmn —> Germano’s dynamic model (1991), Lagrangian dynamic (1995),
Global dynamic approach (2006)
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SF.X.Trias, A.Gorobets, M.Silvis, R.Verstappen, A.Oliva. A new subgrid characteristic
length for turbulence simulations on anisotropic grids, Phys.Fluids, 26:115109, 2017.

Advanced models for large-eddy simulation of turbulent flows




A new length scale
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Subgrid characteristic length for LES: state of the art

@ In the context of LES, most popular (by far) is:

Svol = (AxAyAz)*3 |~ Deardorff (1970)

8o = (a1, 32)vol, 52 = /(DX + By + £22)3
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A new length scale
0O®0000000000

Subgrid characteristic length for LES: state of the art

@ In the context of LES, most popular (by far) is:

Svol = (AxAyAz)'/?

<— Deardorff (1970)

8o = (a1, 32)vol, 52 = /(DX + By + £22)3

@ In the context of DES:

‘6max = max(Ax, Ay, Az) ‘<: Sparlart et al. (1997)

Recent flow-dependant definitions

S0 = \/(w)%AyAz +w2AxAz + w2AxAy)/w]? < Chauvet et al. (2007)

[S2H

wz*n, rE?lX 8|/n_/m|

dsLa = OwFu(VTM)

<= Mockett et al. (2015)

<= Shur et al. (2015)
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Building a new subgrid characteristic length for LES

Research question:

@ Can we find a simple and robust definition of 4 that minimizes the
effect of mesh anisotropies on the performance of subgrid-scale
models?

?
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A new length scale
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Building a new subgrid characteristic length for LES

Research question:

@ Can we find a simple and robust definition of 4 that minimizes the
effect of mesh anisotropies on the performance of subgrid-scale
models?

Starting point:

G=Vu Gs = GA
— —_——
physical space computational space
Ax
where for a Cartesian grid A = Ay

Az
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A new length scale
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Building a new subgrid characteristic length for LES

Idea: o, appears in a natural way when we consider the leading term of
the Taylor series expansion of the subgrid stress tensor,
— & 7 4 — 1 T 4
7(T) = EGG + O(5%) 7(U) = EG(;G(; + O(5%)

>

physical space computational space

8F.X.Trias, A.Gorobets, M.Silvis, R.Verstappen, A.Oliva. A new subgrid characteristic
length for turbulence simulations on anisotropic grids, Phys.Fluids, 26:115109, 2017.
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A new length scale
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Building a new subgrid characteristic length for LES

Idea: o, appears in a natural way when we consider the leading term of
the Taylor series expansion of the subgrid stress tensor,

52 1
(@) = —=GGT + 0% (1) = —=GsGy + O(5%)
N 12 b N 12
physical space computational space

A least-square minimization leads to°

GGl : GGT

O%a =\ GeT GoT

8F.X.Trias, A.Gorobets, M.Silvis, R.Verstappen, A.Oliva. A new subgrid characteristic
length for turbulence simulations on anisotropic grids, Phys.Fluids, 26:115109, 2017.
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Building a new subgrid characteristic length for LES

Properties of new definition

GG : GGT

%a=\GeT GoT
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Properties of new definition

GsGl : GGT
%a=\GeT GoT

o Locally defined: only G and A needed (G5 = GA)
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Building a new subgrid characteristic length for LES

Properties of new definition

GsGl : GGT
%a=\GeT GoT

o Locally defined: only G and A needed (G5 = GA)
o Well-bounded: Ax < dj5q < Az (assuming Ax < Ay < Az)
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Building a new subgrid characteristic length for LES

Properties of new definition

GsGl : GGT
%a=\GeT GoT

o Locally defined: only G and A needed (G5 = GA)
o Well-bounded: Ax < dj5q < Az (assuming Ax < Ay < Az)
@ Sensitive to flow orientation, e.g. for rotating flows (G = Q)

5o = \/w)z((Ay2 +Az2) + W (Ax? + Az2) + w2 (Ax? + Ay?)
sq =

2Jw|?
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Building a new subgrid characteristic length for LES

Properties of new definition

GG : GGT

%a=\GeT GoT

o Locally defined: only G and A needed (G5 = GA)
o Well-bounded: Ax < dj5q < Az (assuming Ax < Ay < Az)
@ Sensitive to flow orientation, e.g. for rotating flows (G = Q)

wZ(Ay? + AZ?) + w2 (Ax? + Az?) + w2 (Ax? + Ay?)
i = 2P
@ Applicable to unstructured grid
09 _ dit1— ¢i

Idea: —— ~ ————— == you can compute G; then, you can compute di5q!
ox Ax
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Building a new subgrid characteristic length for LES

Properties of new definition

GsGl : GGT
%a=\GeT GoT

o Locally defined: only G and A needed (G5 = GA)
o Well-bounded: Ax < dj5q < Az (assuming Ax < Ay < Az)
@ Sensitive to flow orientation, e.g. for rotating flows (G = Q)

5o = \/w)z((Ay2 +Az2) + W (Ax? + Az2) + w2 (Ax? + Ay?)
sq =

2Jw?
@ Applicable to unstructured grid
a¢ ¢:+1 Qi

Idea: — =~ == you can compute G; then, you can compute dj5q!
ox Ax

@ Easy and cheap
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Results for LES

Decaying isotropic turbulence

Comparison with classical Comte-Bellot & Corrsin (CBC) experiment

32x32xN, CBC o

107
New approach &

N Byt ——
1 0-2 N
< d
w
10°
o}
N,={32,64,128,256,512,1024,2048} g
10
1 10

k
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Results for LES

Turbulent channel flow

Re; = 395 DNS Moser et al. LES 32 x 32 x N,

Re, =395 32x32xN,

30 /
N,={32,128, 512}//
i} ’ %

10 S
/ DNS (MKM) ——
5 New approach Slsq _
_.-/ Deardoff §,,; ——
0 L
1 10 100
+
y
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Results for LES

Turbulent channel flow

Re; = 395 DNS Moser et al. LES 32 x 32 x N,
12 Re;=395-32x32xN; ]5NS (Mi(M) ]
h\ New approach 615q R —
10 Deardoff §,,; ——
g (\L\\
—
~ 6 /\ \%
N,={32,128,512,
4 I\ f Z { }
N N,={32,128,512}
\
0 L

0 50 100 150 200 250 300 350

Advanced models for large-eddy simulation of turbulent flows



A new length scale
00000000e000

Results for LES

Turbulent flow around square cylinder at Re = 22000

DNS’ 324M grid points LES 19524 x N,

"F.X.Trias, A.Gorobets, A.Oliva. Turbulent flow around a square cylinder at Reynolds
number 22000: a DNS study, Computers&Fluids, 123:87-98, 2015.
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Results for LES

Turbulent flow around square cylinder at Re = 22000

LES8 19524 x N,

1.8 1.8

16 ‘ 16 t

1.4 * 14 ‘

12 \ g 12 \ g

1 { g 1 \ =
SURRIES 2 £ 1 B RS A A

06 /] % | 0.6 i/ / | %

wl 7 =11 1 wl 4 =

02 X ] r , / 02 I

; . . | | : .

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Deardorff 6,4, New approach djsq

8F X.Trias, D.Folch, A.Gorobets, A.Oliva. Building proper invariants for
eddy-viscosity subgrid-scale models, Physics of Fluids, 27: 065103, 2015.
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Results for LES

Turbulent flow around square cylinder at Re = 22000

1
N,=1000
0.8 S
— H—
%7 <
0.6 /_'k. 0000 o~
. A ee®0 00 e
N & / ~—
A 04 h N,=1000
v
0.2
DNS
0 Lyn et al. ° |
New approach Blsq D
02 3 | Dear(‘iorff 8\,91 —
0 2 4 6 8 10 12 14
X
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A new subgrid characteristic length for turbulence simulations
on anisotropic grids
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P.O. Box 407, 9700 AK Groningen, The Netherlands
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Direct numerical simulations of the incompressible Navier-Stokes equations are not feasible yet
for most practical turbulent flows. Therefore, dynamically less complex mathematical formulations
are necessary for coarse-grained simulations. In this regard, eddy-viscosity models for Large-Eddy
Simulation (LES) are probably the most popular example thereof. This type of models requires the
calculation of a subgrid characteristic length which is usually associated with the local grid size.
For isotropic grids, this is equal to the mesh step. However, for anisotropic or unstructured grids,
such as the pancake-like meshes that are often used to resolve near-wall turbulence or shear layers,
a consensus on defining the subgrid characteristic length has not been reached yet despite the fact
that it can strongly affect the performance of LES models. In this context, a new definition of the
subgrid characteristic length is presented in this work. This flow-dependent length scale is based on
the turbulent, or subgrid stress, tensor and its representations on different grids. The simplicity and
mathematical properties suggest that it can be a robust definition that minimizes the effects of mesh
anisotropies on simulation results. The performance of the proposed subgrid characteristic length is
successfully tested for decaying isotropic turbulence and a turbulent channel flow using artificially
refined grids. Finally, a simple extension of the method for unstructured meshes is proposed and tested
for a turbulent flow around a square cylinder. Comparisons with existing subgrid characteristic length
scales show that the proposed definition is much more robust with respect to mesh anisotropies and
has a great potential to be used in complex geometries where highly skewed (unstructured) meshes
are present. Published by AIP Publishing. https://doi.org/10.1063/1.5012546
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Subgrid characteristic length for LES/DES: state of the art

@ In the context of LES, most popular (by far) is:

Svol = (AxAyAz)'3

<= Deardorff (1970)

5Sco = f(alu a2)5v017 5L2 = \/(AX2 + Ay2 + AZ2)/3

@ In the context of DES:

‘6max = max(Ax, Ay, Az) ‘<= Sparlart et al. (1997)

Recent flow-dependant definitions

dw = \/(w?(AyAz + wW2AxAz + w2AxAy)/|w|? < Chauvet et al. (2007)

~ 1
0w = —= max |/n_/m|

\/§ n,m=1,..8
dsLa = 0w Frcu(VTM)

<= Mockett et al. (2015)

<= Shur et al. (2015)
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Subgrid length scales for DES

Is the new d15q a good candidate?

New definition®10 (PoF'17; HRLM7 2018):

5lsq =

Mockett et al. (HRLM5, 2015):

~ 1
0y = —= max |/n_/m|

\/§ n,m=1,....8

9F.X.Trias, A.Gorobets, M.Silvis, R.Verstappen, A.Oliva. A new subgrid characteristic
length for turbulence simulations on anisotropic grids, Phys.Fluids, 26:115109, 2017.

10A Pont, F.X.Trias, A.Revell, A.Oliva. Assessment and comparison of a recent
kinematic sensitive subgrid length scale in Hybrid RANS-LES. HRLM7, Berlin, 2018.
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Test case: backward facing step

DNS (A.Pont, F.X.Trias, A.Gorobets, A.Oliva, submitted to JFM)
ER=H/(H—h) =2

Rep ~ 13700, Re, = 395

Geom: (6h+ 32h) x (h+ h) x 2h
Mesh DNS: 1510 x 302 x 360 ~ 164M
Mesh DES: 332 x 86 x 60 ~ 1.5M

Lo
nen E::w«m>
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Test case: backward facing step

DNS (A.Pont, F.X.Trias, A.Gorobets, A.Oliva, submitted to JFM)
ER=H/(H—h) =2

Rep ~ 13700, Re, = 395

Geom: (6h+ 32h) x (h+ h) x 2h
Mesh DNS: 1510 x 302 x 360 ~ 164M
Mesh DES: 332 x 86 x 60 ~ 1.5M

Lo
nen E::w«m>

R el T
AP 5 'j?/‘ - )&))/’,

'y
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Test case: backward facing step

DNS (A.Pont, F.X.Trias, A.Gorobets, A.Oliva, submitted to JFM)
ER=H/(H—h) =2

Rep ~ 13700, Re, = 395

Geom: (6h+ 32h) x (h+ h) x 2h
Mesh DNS: 1510 x 302 x 360 ~ 164M
Mesh DES: 332 x 86 x 60 ~ 1.5M

Lo
nen E::w«m>

Experimental study (Vogel and Eaton, 1985)

e ER=H/(H—h)=5/4

e Re, = 28000, Re; = 2500

o Geom: (4h+ 20h) x (h+4h) x 2h
@ Mesh DES:300 x 79 x 60 ~ 1.28M
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BFS (Vogel and Eaton, 1985): u) = uy — (u2)

5lsq vy
-2 5e-01 -0.1 1] 0.1 2,5e-01
R
xT1(h)
x3(h)
1] 4 5] 8 10
x1(h)
Ow )
x3(h)

x1h
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Properties of new definition in the shear layer
Simple 2D flow analysis

B0 0 1
AZ(O B‘1> G:(l—ZwO)

— dyq Oy With p=10
7 | — G with p=1/5 —— Qg With =5
Oy With B=1/2 Oy With p=2
6 L
5
increasing 3

w 4
3
2 L 4
1

Pure shear Simple shear Pure rotation

w=0 w=0.5 w=1
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Properties of new definition in the shear layer
Simple 2D flow analysis

B0 0 1
AZ(O B‘1> G:(1—2w0>

0 1Y\ s 0 1
00 I\ =1 0

Pure Shear (w = 0) Simple Shear (w=0.5) Pure Rotation (w=1)

Advanced models for large-eddy simulation of turbulent flows



On-going research
O000@0000000

Properties of new definition in the shear layer
Simple 2D flow analysis

B0 0 1
A:(o B‘1> G:(l—ZwO)

~—

p=2 AX4
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Properties of new definition in the shear layer

Simple 2D flow analysis: &, vs Olsq
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Properties of new definition in the shear layer

Simple 2D flow analysis: &, vs Olsq
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Properties of new definition in the shear layer

Simple 2D flow analysis: &, vs Olsq

A

A Unsensitive to mesh rotation for simple shear flow (w = 0.5)
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Simple 2D flow analysis: &, vs Olsq
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in the shear layer

g 0
0 p71

o

GsGJ - GGT
GGT: GGT

)

6lsq =

Advanced models for large-eddy simulation of turbulent flows
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Properties of new definition in the shear layer

Simple 2D flow analysis: &, vs Olsq

g 0 0 1
AZ(O B‘1> G:(l—ZwO)

P GsG{ : GGT s B2(1—2w)* + B2
597\ GGT  GGT sq = (1—2w)*+1
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Properties of new definition in the shear layer

Simple 2D flow analysis: &, vs Olsq

B0 0 1
A:(o B‘1> G:(l—ZwO)

S _ G§G5T : GGT — 5 _ /82(1 — 2w)4 + 6—2
597\ GGT  GGT sq = (1—2w)*+1

=N !A]AXZ . =+ 1~
= Xt ud
" ' AXq

) For w = 0.5 (simple shear) = Jj5q = 871 (= Ax2)
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Improving LES models for buoyancy-driven flows

i+ (@-Vu=vV?a-Vp —V-r(@; V-u=0
eddy-viscosity — 7 (4) = —2v;5(7)

vt ~ (Cnd)?Din(1) |
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Improving LES models for buoyancy-driven flows

i+ (@-Vu=vV2a—-Vp+f-V.-7(@) ; V-
eddy-viscosity — 7 () = —21:5(0)

=
[l
o

ve ~ (Cn6)? D (T0)

0T+ (@ V)T=aV?’T—-V-q where g=uT T
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Improving LES models for buoyancy-driven flows

0+ (T-V)u=vVu—-Vp+f—-V-7(@); V-Tu=0
eddy-viscosity — 7 (4) = —2v;5(7)

vt ~ (Cnd)?Din(1) |

T+ (@ V)T =aV?T -V -q where qg=uT —TT

A But first we need to answer the following research question:

@ Are eddy-viscosity models for momentum able to provide
satisfactory results for turbulent Rayleigh-Bénard convection?
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Improving LES models for buoyancy-driven flows

0+ (T-V)u=vVu—-Vp+f—-V-7(@); V-Tu=0
eddy-viscosity — 7 (4) = —2v;5(7)

vt ~ (Cnd)?Din(1) |

T+ (@ V)T =aV?T -V -q where qg=uT —TT

A But first we need to answer the following research question:

@ Are eddy-viscosity models for momentum able to provide
satisfactory results for turbulent Rayleigh-Bénard convection?

Idea: let's do an LES for momentum and a DNS for temperature!
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DNS at very low Pr number

Why? scale separation scales with Pr9->
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|
DNS of a RB at Ra = 7.14 x 10° and Pr = 0.005 (liquid sodium)
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LES™ results at very low Pr number

6.3

6.2 n 1

6.1

Nusselt
(=)}

5.9

5.8

5.7 :

Number of grid points

11F X Trias, D.Folch, A.Gorobets, A.Oliva. Building proper invariants for
eddy-viscosity subgrid-scale models, Physics of Fluids, 27: 065103, 2015.
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LES™ results at very low Pr number

6.3

6.2 n 1

6.1

o/
al

5.7 : :

Nusselt
(=)}
\‘i

No model —&—

Number of grid points

11F X Trias, D.Folch, A.Gorobets, A.Oliva. Building proper invariants for
eddy-viscosity subgrid-scale models, Physics of Fluids, 27: 065103, 2015.
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LES™ results at very low Pr number

63
62 P ‘\G//U o
6.1

A

Nusselt
(=)}
\‘i

59 /
/ LES —e—
5.8

No model —&—

5.7 : :

Number of grid points

11F X Trias, D.Folch, A.Gorobets, A.Oliva. Building proper invariants for
eddy-viscosity subgrid-scale models, Physics of Fluids, 27: 065103, 2015.
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LES results at very low Pr number

DNS —— o DNS ——
03 No model —&— | 03 h No model —&— |
025 JZ’BBS\S LES —e— 025 \ LES —e—
. .25
0.2 S \S\B 0.2 4] \\&‘E\S
%015 E\_ %0_15 . \S\S\@‘Hf
0.1 0.1
0.05 0.05
0 0
0 0.1 0.2 0.3 0.4 05 0 0.1 0.2 03 0.4 05
z z
64 x 32 x 32 96 x 52 x 52
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results at very low Pr number

0.03 DN —— | 003 Z’B‘st\ DN —— |

No model —&—

No model —&—
LES —o— )\S\S\s LES —o—

\S\S\S\H

00 FQ \\ 002
0.01 \e\m 0.01 \~
~——_ ————oo|
0 0
0 0.1 02 03 04 05 0 0.1 02 03 04 05
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Concluding remarks

@ A new definition for § has been proposed

GGl : GGT
Osa =\l GGT . GoT

o LES tests: HIT, channel flow, square cylinder (unstructured) v
@ DES tests: backward facing step, turbulent jet (not shown here)

e Eddy-viscosity models work for (momentum) in Rayleigh-Bénard v/
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Conclusions
e0

Concluding remarks

@ A new definition for § has been proposed

GsGJ : GGT
P =\GeT 6T

o LES tests: HIT, channel flow, square cylinder (unstructured) v

@ DES tests: backward facing step, turbulent jet (not shown here)

e Eddy-viscosity models work for (momentum) in Rayleigh-Bénard v/
? %

———

Takeaway message: 8 37 o8

@ Definition of § can have a big effect on simulation results
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