

F.Xavier Trias

Preserving symmetries on unstructured grids: paving the way for DNS and LES on complex geometries

F.Xavier Trias

Preserving symmetries on unstructured grids: paving the way for DNS and LES on complex geometries

F.Xavier Trias

Preserving symmetries on unstructured grids: paving the way for DNS and LES on complex geometries

F.Xavier Trias

Background 000000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions 0000

Contents

2 Preserving symmetries at discrete level

3 LES of RBC

Portability and beyond

5 Conclusions

Background ●00000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions 0000
About I Professiona	myself			

- Current position (since 2018): Associate Professor at UPC
- Previous positions: PostDoc at University of Groningen (2007-2009) and UPC (2010-2013), and *Ramón y Cajal* Senior Researcher at UPC (2013-2018).
- My **research** focus is on fluid mechanics, turbulence modeling, physics and numerics of complex flows, applied mathematics and numerical methods.
- Some numbers: 50 papers, 143 conferences, 9 PhD's+5 (on-going)
- Stays and collaborations: Groningen (The Netherlands), UCLA, KIAM (Russian Academy of Sciences), Stanford, Manchester (UK), Tsinghua (China), TokioTech (Japan), Napoli (Italy)...
- More info: www.fxtrias.com

Background 0●0000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions 0000
	myself e personal stuff			

- My complete name: Francesc Xavier Trias Miquel
- Born in Barcelona
- My mother tongue is Catalan but I also speak Spanish at native level.
- Hobbies? I like my work but also sports. Most practiced ones are running and football:

Groningen (2009?)

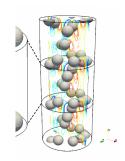
Barcelona (2019)

Background	Preserving symmetries at discrete level	LES of RBC	Portability and beyond	Conclusions
000000		00000		0000

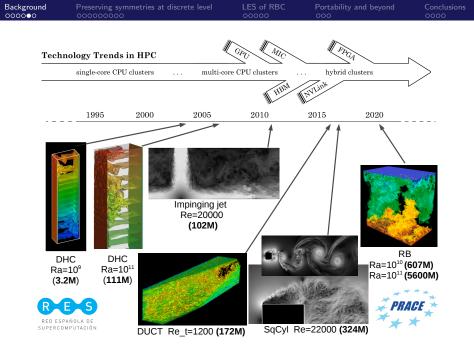
The CTTC research group

Heat and Mass Transfer Technological Center (Catalan: *Centre Tecnològic de Transferència de Calor*) has more than 25 years experience on CFD:

- Fundamental research on numerical methods, fluid dynamics and heat and mass transfer phenomena.
- **Applied research** on thermal and fluid dynamic optimization of thermal system and equipment.



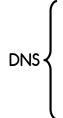
Background 000●00	Preservin; 000000	g symmetries at 000		LES of RBC 00000	Portability and beyond	Conclusions 0000
CTTC'	s histo	rical ba	ckgroun	id in HPC	2	
	1995	2000	2005	2010	2015 2020	
Techn	ology Trend	ds in HPC		GPU MIC	FPGA	_<
	single-core C	CPU clusters	multi-co	re CPU clusters	hybrid clusters	\rightarrow
	DPC	and software	STG	T termo	scalability up to 100k cores	_ <u>_</u>
se	quential struct	ured par	callel structured deep source of app fundamental re	olied and	HUIUS heterogeneous alg	ebraic



Background	
000000	

LES of RB 00000 Portability and beyor 000 Conclusions

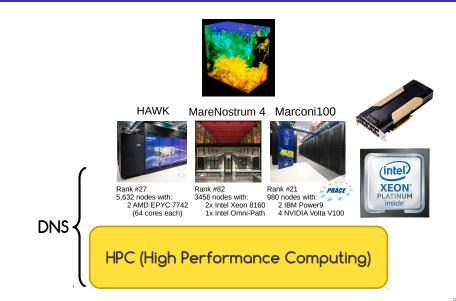
General motivation: (very) large-scale DNS/LES



LES of RB(00000 Portability and beyon

Conclusions

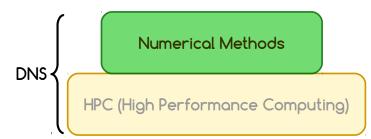
General motivation: (very) large-scale DNS/LES



LES of RB(00000 Portability and beyor 000 Conclusions

General motivation: (very) large-scale DNS/LES

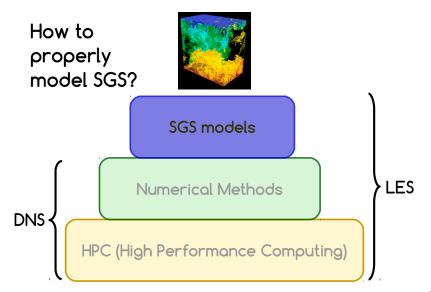
How to properly discretize NS?



LES of RB(00000 Portability and beyon

Conclusions

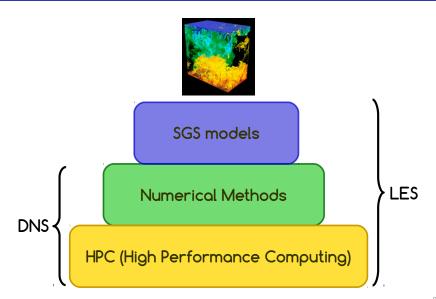
General motivation: (very) large-scale DNS/LES



LES of RBC 00000 Portability and beyor

Conclusions

General motivation: (very) large-scale DNS/LES

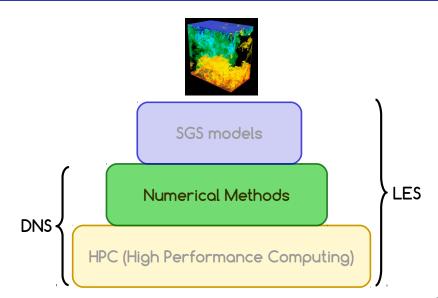


LES of RB(

Portability and beyon

Conclusions

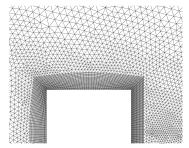
Numerical methods for DNS/LES



Numerical methods for DNS/LES

Research question #1:

• Can we construct numerical discretizations of the Navier-Stokes equations suitable for **complex geometries**, such that the **symmetry properties** are exactly preserved?



 DNS^1 of the turbulent flow around a square cylinder at Re = 22000

¹F.X.Trias, A.Gorobets, A.Oliva. *Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study*, **Computers&Fluids**, 123:87-98, 2015.

Background 000000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions 0000
Motivat	ion			

Frequently used general purpose CFD codes:

- STAR-CCM+
- Code-Saturne
- OpenFOAM

Background 000000	Preserving symmetrie 0●0000000	es at discrete level	LES of RBC 00000	Portability and beyo	ond Conclusions
Motiva	tion				
Frequently used general purpose CFD codes:					
• ST	AR-CCM+			MENS	9999999999999999999999999

CD-adapco

FIUENT

SIEMENS

Main common characteristics of LES in such codes:

• Unstructured finite volume method, collocated grid

Open ∇FOAM®

- Second-order spatial and temporal discretisation
- Eddy-viscosity type LES models

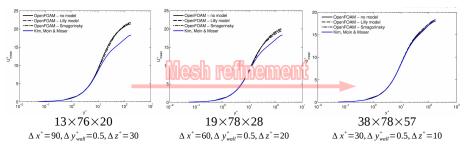
ANSYS-FLUENT

Code-Saturne

OpenFOAM

Background 000000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions 0000

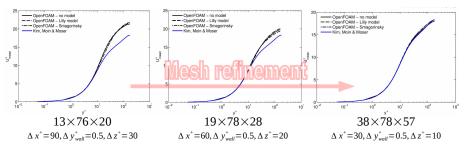
Open ∇ FOAM® LES³ results of a turbulent channel for at $Re_{\tau} = 180$



³E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method* for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows, **Journal of Computational Physics**, 345, 565-595, 2017.

Background 000000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions 0000

Open ∇ FOAM® LES³ results of a turbulent channel for at $Re_{\tau} = 180$

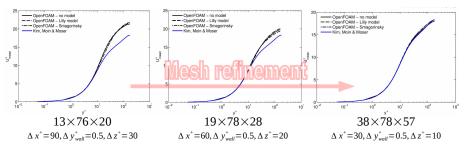


• Are LES results are merit of the SGS model?

³E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method* for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows, **Journal of Computational Physics**, 345, 565-595, 2017.

Background 000000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions 0000

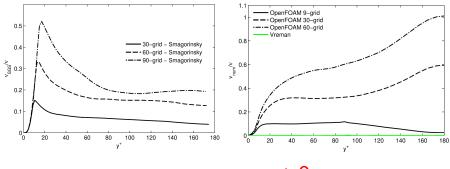
Open ∇ FOAM® LES³ results of a turbulent channel for at $Re_{\tau} = 180$



• Are LES results are merit of the SGS model? Apparently NOT !!! X

³E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows*, **Journal of Computational Physics**, 345, 565-595, 2017.

Open ∇ FOAM® LES⁴ results of a turbulent channel for at $Re_{\tau} = 180$

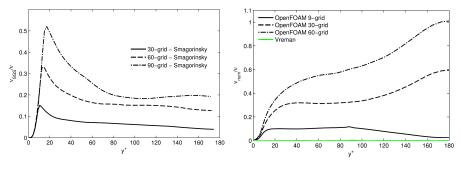


 $\nu_{num} \neq 0$

⁴E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows*, **Journal of Computational Physics**, 345, 565-595, 2017.

Background 000000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions 0000

Open ∇ FOAM® LES⁴ results of a turbulent channel for at $Re_{\tau} = 180$



 $\nu_{SGS} < \nu_{num} \neq 0$

⁴E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. *A quantification method for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows*, **Journal of Computational Physics**, 345, 565-595, 2017.

Background	Preserving symmetries at discrete level	LES of RBC	Portability and beyond	Conclusions
	00000000			

Continuous

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{C}(\boldsymbol{u}, \boldsymbol{u}) = \nu \nabla^2 \boldsymbol{u} - \nabla \boldsymbol{p}$$
$$\nabla \cdot \boldsymbol{u} = 0$$

Background	Preserving symmetries at discrete level	LES of RBC	Portability and beyond	Conclusions
	0000000			

Continuous

Discrete

Background	Preserving symmetries at discrete level	LES of RBC	Portability and beyond	Conclusions
	0000000			

Continuous

Discrete

$$\langle \boldsymbol{a}, \boldsymbol{b}
angle = \int_{\Omega} \boldsymbol{a} \boldsymbol{b} d\Omega$$

 $\langle \boldsymbol{a}_h, \boldsymbol{b}_h \rangle_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$

Background	Preserving symmetries at discrete level	LES of RBC	Portability and beyond	Conclusions
	0000000			

Continuous

Discrete

$$J_{\Omega}$$

 $\langle C(\boldsymbol{u},\varphi_1),\varphi_2 \rangle = - \langle C(\boldsymbol{u},\varphi_2),\varphi_1 \rangle$

 $\mathsf{C}\left(\boldsymbol{u}_{h}\right)=-\mathsf{C}^{T}\left(\boldsymbol{u}_{h}\right)$

	Preserving symmetries at discrete level	LES of RBC	Portability and beyond	Conclusions
000000	0000000	00000	000	0000

Continuous

Discrete

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \int_{\Omega} \boldsymbol{a} \boldsymbol{b} d\Omega$$

 $\langle \boldsymbol{a}_h, \boldsymbol{b}_h \rangle_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$

$$\begin{split} \langle \boldsymbol{C} \left(\boldsymbol{u}, \varphi_1 \right), \varphi_2 \rangle &= - \left\langle \boldsymbol{C} \left(\boldsymbol{u}, \varphi_2 \right), \varphi_1 \right\rangle \\ \langle \nabla \cdot \boldsymbol{a}, \varphi \rangle &= - \left\langle \boldsymbol{a}, \nabla \varphi \right\rangle \end{split}$$

 $\mathsf{C}\left(\boldsymbol{u}_{h}\right) = -\mathsf{C}^{\mathsf{T}}\left(\boldsymbol{u}_{h}\right)$ $\Omega\mathsf{G} = -\mathsf{M}^{\mathsf{T}}$

Background	Preserving symmetries at discrete level	LES of RBC	Portability and beyond	Conclusions
	0000000			

.

Symmetry-preserving discretization

Continuous

Discrete

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{C}(\boldsymbol{u}, \boldsymbol{u}) = \nu \nabla^2 \boldsymbol{u} - \nabla \boldsymbol{p}$$
$$\nabla \cdot \boldsymbol{u} = 0$$

$$\Omega \frac{d\boldsymbol{u}_{h}}{dt} + \mathsf{C}\left(\boldsymbol{u}_{h}\right)\boldsymbol{u}_{h} = \mathsf{D}\boldsymbol{u}_{h} - \mathsf{G}\boldsymbol{p}_{h}$$
$$\mathsf{M}\boldsymbol{u}_{h} = \mathbf{0}_{h}$$

$$\langle oldsymbol{a},oldsymbol{b}
angle = \int_{\Omega}oldsymbol{a}oldsymbol{b} d\Omega$$

$$\langle \boldsymbol{a}_h, \boldsymbol{b}_h \rangle_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$$

$$egin{aligned} &\langle m{C}\left(m{u},arphi_{1}
ight),arphi_{2}
angle &=-\left\langle m{C}\left(m{u},arphi_{2}
ight),arphi_{1}
ight
angle \ &\left\langle
abla \cdotm{a},arphi
ight
angle &=-\left\langlem{a},
abla arphi
ight
angle \ &\left\langle m{a},arphi
ight
angle &\left\langle m{a},m{a}
ight
angle &\left\langle m{a},$$

$$C(\boldsymbol{u}_h) = -C^T(\boldsymbol{u}_h)$$
$$\Omega \mathbf{G} = -\mathbf{M}^T$$
$$\mathbf{D} = \mathbf{D}^T \quad def - \mathbf{C}$$

Background 000000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions 0000

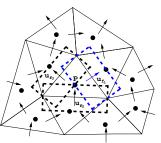
Why collocated arrangements are so popular?

- STAR-CCM+
- ANSYS-FLUENT
- Code-Saturne
- OpenFOAM

$$\Omega_{s}\frac{d\boldsymbol{u}_{s}}{dt}+\mathsf{C}\left(\boldsymbol{u}_{s}\right)\boldsymbol{u}_{s}=\mathsf{D}\boldsymbol{u}_{s}-\mathsf{G}\boldsymbol{p}_{c};\quad\mathsf{M}\boldsymbol{u}_{s}=\boldsymbol{0}_{c}$$

In staggered meshes

- $p-u_s$ coupling is naturally solved \checkmark
- $C(u_s)$ and D difficult to discretize X



Background 000000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions 0000

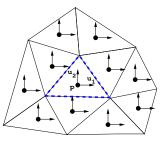
Why collocated arrangements are so popular?

- STAR-CCM+
- ANSYS-FLUENT
- Code-Saturne
- OpenFOAM

$$\Omega_{c}\frac{d\boldsymbol{u}_{c}}{dt} + C(\boldsymbol{u}_{s})\boldsymbol{u}_{c} = \boldsymbol{\mathsf{D}}\boldsymbol{u}_{c} - \boldsymbol{\mathsf{G}}_{c}\boldsymbol{p}_{c}; \quad \boldsymbol{\mathsf{M}}_{c}\boldsymbol{u}_{c} = \boldsymbol{\mathsf{0}}_{c}$$

In collocated meshes

- *p*-*u_c* coupling is cumbersome X
- $C(u_s)$ and D easy to discretize \checkmark
- Cheaper, less memory,... \checkmark



LES of RBC

Portability and beyond

Conclusions

Why collocated arrangements are so popular?

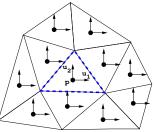
Everything is easy except the pressure-velocity coupling...

STAR-CCM+
 ANSYS-FLUENT
 Code-Saturne
 OpenFOAM
 OpenFOAM

$$\Omega_{c} \frac{d\boldsymbol{u}_{c}}{dt} + C(\boldsymbol{u}_{s}) \boldsymbol{u}_{c} = \mathsf{D}\boldsymbol{u}_{c} - \mathsf{G}_{c}\boldsymbol{p}_{c}; \quad \mathsf{M}_{c}\boldsymbol{u}_{c} = \boldsymbol{0}_{c}$$

In collocated meshes

- *p*-*u_c* coupling is cumbersome X
- $C(u_s)$ and D easy to discretize \checkmark
- Cheaper, less memory,... 🗸



Background 000000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions 0000

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary⁵:

- Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} L_{c} L^{-1} M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \boldsymbol{X}$
- Energy: $\boldsymbol{p}_{c} (L L_{c}) \boldsymbol{p}_{c} \neq 0 \boldsymbol{X}$

⁵F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.

Background 000000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions

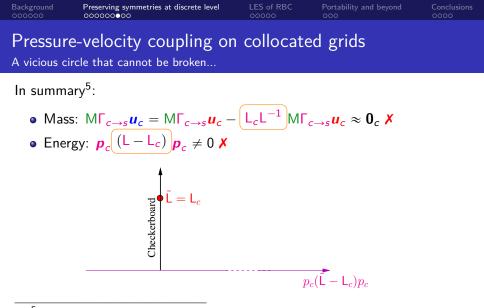
Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary⁵:

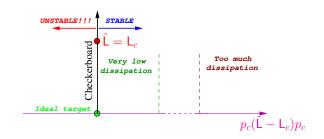
- Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} (L_{c}L^{-1})M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \boldsymbol{\times}$
- Energy: $p_c (L L_c) p_c \neq 0$

⁵F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.



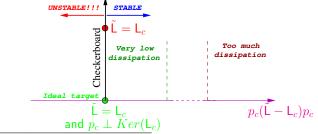
⁵F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.

Background 000000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions 0000
Pressure-velocity coupling on collocated grids A vicious circle that cannot be broken				
In summa	ary ⁵ :			
• Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} - L_{c}L^{-1}M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \boldsymbol{\times}$				
• Energy: $p_c(L - L_c) p_c \neq 0 X$				



⁵F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.

Background 000000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions 0000
	e-velocity coupling on rcle that cannot be broken	collocate	ed grids	
In summa	ary ⁵ :			
• Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} - [L_{c}L^{-1}]M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \boldsymbol{X}$ • Energy: $\boldsymbol{p}_{c} (L - L_{c}) \boldsymbol{p}_{c} \neq 0 \boldsymbol{X}$				
	· · · · · · · · · · · · · · · · · · ·			



⁵Shashank, J.Larsson, G.Iaccarino. *A co-located incompressible Navier-Stokes solver with exact mass, momentum and kinetic energy conservation in the inviscid limit,* **Journal of Computational Physics**, 229: 4425-4430,2010.

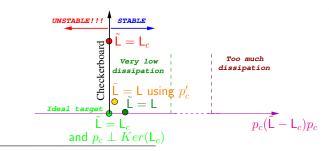
Background	Preserving symmetries at discrete level	LES of RBC	Portability and beyond	Conclusions
	000000000			

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary⁵:

- Mass: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} (L_{c}L^{-1})M\Gamma_{c \to s} \boldsymbol{u}_{c} \approx \boldsymbol{0}_{c} \boldsymbol{\times}$
- Energy: $p_c (L L_c) p_c \neq 0 X$



⁵F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen. Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.

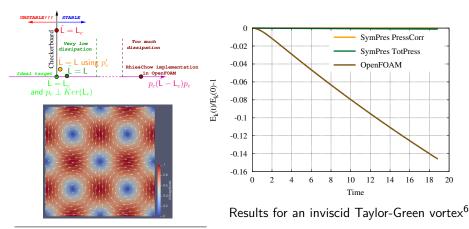
Background 000000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions 0000
	e-velocity coupling on	collocat	ed grids	
In summa	ıry ⁵ :			
	s: $M\Gamma_{c \to s} \boldsymbol{u}_{c} = M\Gamma_{c \to s} \boldsymbol{u}_{c} -$ gy: $\boldsymbol{p}_{c} (L - L_{c}) \boldsymbol{p}_{c} \neq 0 \boldsymbol{X}$	$L_c L^{-1}$ MF	$u_{c\to s}u_{c}\approx 0_{c}$ X	
	UNSTABLE !!! $\tilde{L} = L_c$ $\tilde{L} = L_c$ Very low dissipation $\tilde{L} = L$ using p $\tilde{L} = L$			
	$\begin{array}{c} L = L_c \\ and \ p_c \perp Ker(L_c) \end{array}$	1	$p_c(L-L_c)p_c$	

⁵E.Komen, J.A.Hopman, E.M.A.Frederix, F.X.Trias, R.W.C.P.Verstappen. "A symmetry-preserving second-order time-accurate PISO-based method". **Computers & Fluids**, 225:104979, 2021.

Background	Preserving symmetries at discrete level	LES of RBC	Portability and beyond	Conclusions
	000000000			

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken can almost be broken...

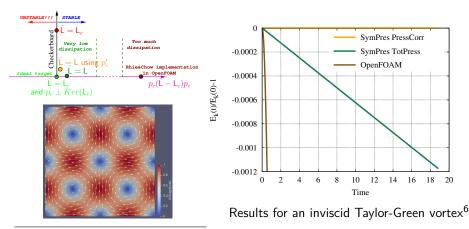


⁶E.Komen, J.A.Hopman, E.M.A.Frederix, F.X.Trias, R.W.C.P.Verstappen. "A symmetry-preserving second-order time-accurate PISO-based method". **Computers & Fluids**, 225:104979, 2021.

Background	Preserving symmetries at discrete level	LES of RBC	Portability and beyond	Conclusions
	000000000			

Pressure-velocity coupling on collocated grids

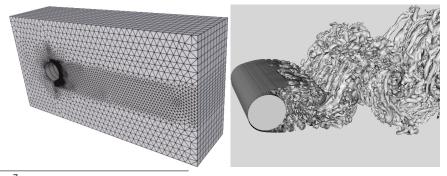
A vicious circle that cannot be broken can almost be broken...



⁶E.Komen, J.A.Hopman, E.M.A.Frederix, F.X.Trias, R.W.C.P.Verstappen. "A symmetry-preserving second-order time-accurate PISO-based method". **Computers & Fluids**, 225:104979, 2021.

Pressure-velocity coupling on collocated grids Examples of simulations

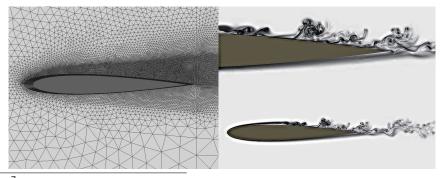
Despite these inherent limitations, symmetry-preserving collocated formulation has been successfully used for DNS/LES simulations⁷:



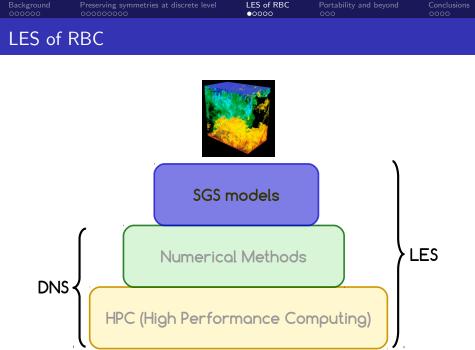
⁷R.Borrell, O.Lehmkuhl, F.X.Trias, A.Oliva. *Parallel Direct Poisson solver for discretizations with one Fourier diagonalizable direction*. Journal of Computational **Physics**, 230:4723-4741, 2011.

Pressure-velocity coupling on collocated grids Examples of simulations

Despite these inherent limitations, symmetry-preserving collocated formulation has been successfully used for DNS/LES simulations⁷:

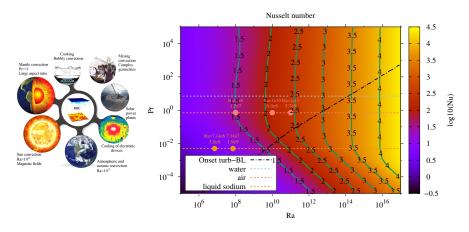


⁷F.X.Trias and O.Lehmkuhl. *A self-adaptive strategy for the time-integration of Navier-Stokes equations*. **Numerical Heat Transfer, part B**, 60(2):116-134, 2011.



Research question #2:

• Can we hit the ultimate regime of thermal turbulence

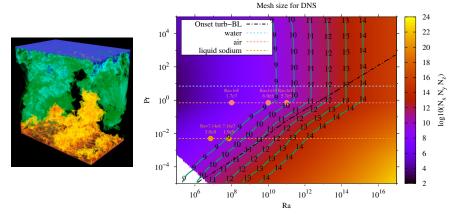


?

Background 000000	Preserving symmetries at discrete level	LES of RBC ●0000	Portability and beyond	Conclusions 0000
LES of	RBC			

Research question #2:

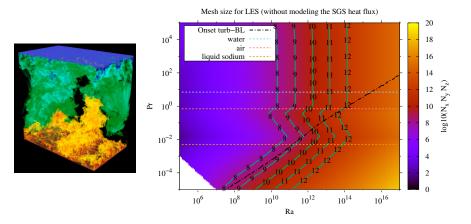
• Can we hit the ultimate regime of thermal turbulence with DNS?



Background 000000	Preserving symmetries at discrete level	LES of RBC ●0000	Portability and beyond	Conclusions 0000
LES of	RBC			

Research question #2:

• Can we hit the ultimate regime of thermal turbulence with LES?



	ackground 00000	Preserving symmetries at discrete level	LES of RBC 0000	Portability and beyond	Conclusions
F	Problems	s to model the SGS h	eat flux ⁸		

$$\partial_{t}\overline{\boldsymbol{u}} + (\overline{\boldsymbol{u}} \cdot \nabla)\overline{\boldsymbol{u}} = \nu \nabla^{2}\overline{\boldsymbol{u}} - \nabla\overline{\boldsymbol{p}} \qquad -\nabla \cdot \tau(\overline{\boldsymbol{u}}) \quad ; \quad \nabla \cdot \overline{\boldsymbol{u}} = 0$$

eddy-viscosity $\longrightarrow \quad \tau \quad (\overline{\boldsymbol{u}}) = -2\nu_{t}S(\overline{\boldsymbol{u}})$
$$\overline{\nu_{t}} \approx (\underline{C_{m}\delta})^{2}\underline{D_{m}(\overline{\boldsymbol{u}})} \qquad \longrightarrow \quad \{\text{WALE, Vreman, QR, Sigma, S3PQR,...}\}$$

⁸F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection*, **Physics of Fluids**, 29:105103, 2017.

Background 000000	Preserving symmetries at discrete level	LES of RBC 0●000	Portability and beyond	Conclusions
Prob	ems to model the SGS	heat flux ⁸	3	

$$\partial_{t}\overline{\boldsymbol{u}} + (\overline{\boldsymbol{u}}\cdot\nabla)\overline{\boldsymbol{u}} = \nu\nabla^{2}\overline{\boldsymbol{u}} - \nabla\overline{\boldsymbol{p}} + \overline{\boldsymbol{f}} - \nabla\cdot\tau(\overline{\boldsymbol{u}}) \quad ; \quad \nabla\cdot\overline{\boldsymbol{u}} = 0$$

eddy-viscosity $\longrightarrow \tau \ (\overline{\boldsymbol{u}}) = -2\nu_{t}S(\overline{\boldsymbol{u}})$

 $\nu_t \approx (C_m \delta)^2 D_m(\overline{u}) \longrightarrow \{ WALE, Vreman, QR, Sigma, S3PQR,... \}$

$$\partial_t \overline{T} + (\overline{u} \cdot \nabla) \overline{T} = \alpha \nabla^2 \overline{T} - \nabla \cdot \mathbf{q} \quad \text{where} \quad \mathbf{q} = \overline{u} \overline{T} - \overline{u} \overline{T}$$

⁸F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection*, **Physics of Fluids**, 29:105103, 2017.

⁸F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection*, **Physics of Fluids**, 29:105103, 2017.

$$\frac{\text{Background}}{\text{coccocc}} \xrightarrow{\text{Preserving symmetries at discrete level}}_{\text{coccocc}} \xrightarrow{\text{LES of RBC}}_{\text{cocc}} \xrightarrow{\text{Portability and beyond}}_{\text{cocc}} \xrightarrow{\text{Cocclusions}}_{\text{cocc}}$$

$$\frac{\text{Problems to model the SGS heat flux}^8$$

$$\frac{\partial_t \overline{u} + (\overline{u} \cdot \nabla) \overline{u} = \nu \nabla^2 \overline{u} - \nabla \overline{p} + \overline{f} - \nabla \cdot \tau(\overline{u}) ; \quad \nabla \cdot \overline{u} = 0$$

$$\text{eddy-viscosity} \longrightarrow \tau (\overline{u}) = -2\nu_t S(\overline{u})$$

$$\frac{\nu_t \approx (C_m \delta)^2 D_m(\overline{u})}{\partial_t \overline{T} + (\overline{u} \cdot \nabla) \overline{T}} = \alpha \nabla^2 \overline{T} - \nabla \cdot q \quad \text{where} \quad q = \overline{u} \overline{T} - \overline{u} \overline{T}$$

$$\text{eddy-diffusivity}$$

$$q = \alpha_t \nabla \overline{T} \quad (\equiv q^{eddy})$$

⁸F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection*, **Physics of Fluids**, 29:105103, 2017.

⁸F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection*, **Physics of Fluids**, 29:105103, 2017.

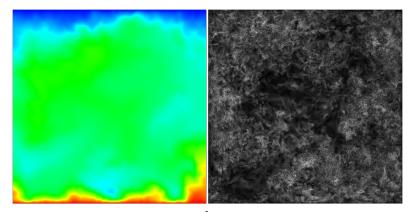
Background 000000	Preserving symmetries at discrete level	LES of RBC 00●00	Portability and beyond	Conclusions 0000
DNS	results at very l	ow <i>Pr</i> nu	imber	

Why? scale separation grows as $\eta_K/\eta_T = Pr^{3/4}$.

 η_T : Obukhov-Corrsin scale; η_K : Kolmogorov scale

Background 000000	Preserving symmetries at discrete level	LES of RBC 00●00	Portability and beyond	Conclusions 0000	
DNS results at very low <i>Pr</i> number					
Why? scale separation grows as $\eta_K/\eta_T = Pr^{3/4}$. Here: $\eta_T \approx 53.2\eta_K$					

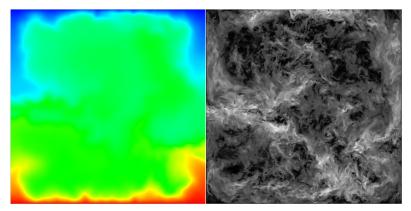
 η_T : Obukhov-Corrsin scale; η_K : Kolmogorov scale



DNS of a RB at $Ra = 7.14 \times 10^6$ and Pr = 0.005 (liquid sodium) $488 \times 488 \times 1280 \approx 305M$

Background 000000	Preserving symmetries at discrete level	LES of RBC 00●00	Portability and beyond	Conclusions 0000
DNS	results at very low <i>Pr</i> number			
			. /	

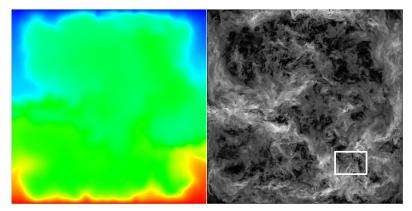
Why? scale separation grows as $\eta_K / \eta_T = Pr^{3/4}$. Here: $\eta_T \approx 53.2\eta_K$ η_T : Obukhov-Corrsin scale; η_K : Kolmogorov scale



DNS of a RB at $Ra = 7.14 \times 10^7$ and Pr = 0.005 (liquid sodium) 966 × 966 × 2048 ≈ **1911M**

Background 000000	Preserving symmetries at discrete level	LES of RBC 00●00	Portability and beyond	Conclusions 0000
DNS	results at very low <i>Pr</i> number			

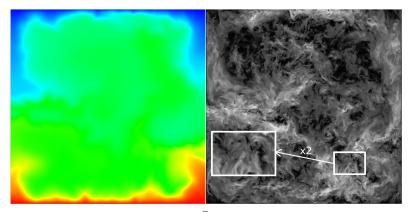
Why? scale separation grows as $\eta_K / \eta_T = Pr^{3/4}$. Here: $\eta_T \approx 53.2\eta_K$ η_T : Obukhov-Corrsin scale; η_K : Kolmogorov scale



DNS of a RB at $Ra = 7.14 \times 10^7$ and Pr = 0.005 (liquid sodium) 966 × 966 × 2048 ≈ **1911M**

Background 000000	Preserving symmetries at discrete level	LES of RBC 00●00	Portability and beyond	Conclusions 0000
DNS	results at very low <i>Pr</i> number			

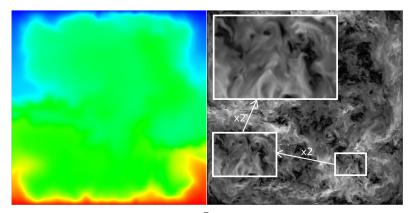
Why? scale separation grows as $\eta_K/\eta_T = Pr^{3/4}$. Here: $\eta_T \approx 53.2\eta_K$ η_T : Obukhov-Corrsin scale; η_K : Kolmogorov scale



DNS of a RB at $Ra = 7.14 \times 10^7$ and Pr = 0.005 (liquid sodium) 966 × 966 × 2048 ≈ **1911M**

Background 000000	Preserving symmetries at discrete level	LES of RBC 00●00	Portability and beyond	Conclusions 0000
DNS	results at very l	ow <i>Pr</i> nu	mber	

Why? scale separation grows as $\eta_{\kappa}/\eta_{T} = Pr^{3/4}$. Here: $\eta_{T} \approx 53.2\eta_{\kappa}$ η_{T} : Obukhov-Corrsin scale; η_{κ} : Kolmogorov scale

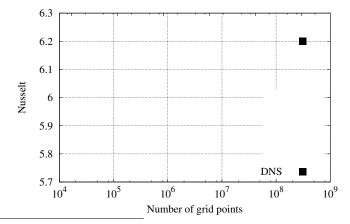


DNS of a RB at $Ra = 7.14 \times 10^7$ and Pr = 0.005 (liquid sodium) 966 × 966 × 2048 ≈ **1911M**

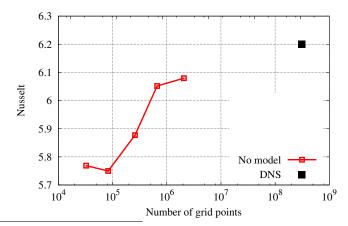
Background 000000	Preserving symmetries at discrete level	LES of RBC 00€00	Portability and beyond	Conclusions 0000
DNS	results at very l	ow <i>Pr</i> nu	ımber	

Why? scale separation grows as $\eta_K/\eta_T = Pr^{3/4}$. Here: $\eta_T \approx 53.2\eta_K$ η_T : Obukhov-Corrsin scale; η_K : Kolmogorov scale

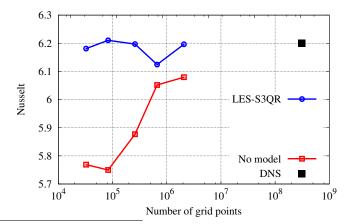
DNS of a RB at $Ra = 7.14 \times 10^7$ and Pr = 0.005 (liquid sodium) 966 × 966 × 2048 \approx **1911M**



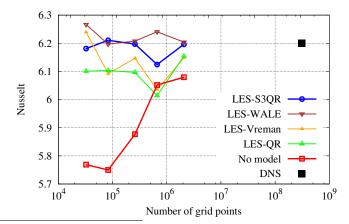
⁹F.X.Trias, F.Dabbagh, A.Gorobets, C.Oliet. *On a proper tensor-diffusivity model for LES of buoyancy-driven turbulence*, **Flow Turbul Combust**, 105:393-414, 2020.



⁹F.X.Trias, F.Dabbagh, A.Gorobets, C.Oliet. *On a proper tensor-diffusivity model for LES of buoyancy-driven turbulence*, **Flow Turbul Combust**, 105:393-414, 2020.

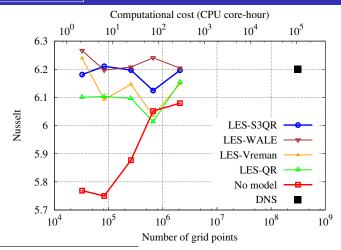


⁹F.X.Trias, F.Dabbagh, A.Gorobets, C.Oliet. *On a proper tensor-diffusivity model for LES of buoyancy-driven turbulence*, **Flow Turbul Combust**, 105:393-414, 2020.



⁹F.X.Trias, F.Dabbagh, A.Gorobets, C.Oliet. *On a proper tensor-diffusivity model for LES of buoyancy-driven turbulence*, **Flow Turbul Combust**, 105:393-414, 2020.

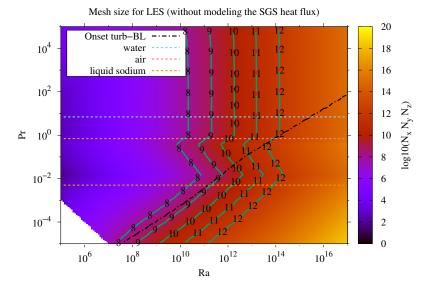
RB at $Ra = 7.14 \times 10^6$ and Pr = 0.005 (DNS $\rightarrow 488 \times 488 \times 1280 \approx 305$ M)



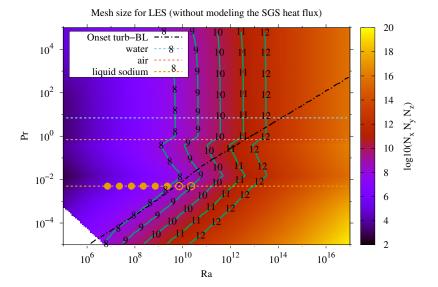
⁹F.X.Trias, F.Dabbagh, A.Gorobets, C.Oliet. *On a proper tensor-diffusivity model for LES of buoyancy-driven turbulence*, **Flow Turbul Combust**, 105:393-414, 2020.

Background Preserving symmetries at discrete level LES of RBC Portability and beyond Concl 000000 000000000 0000 0000 0000 0000

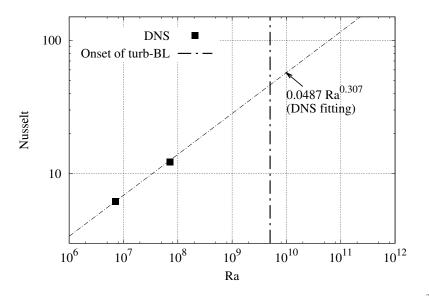
LES results at very low Pr number



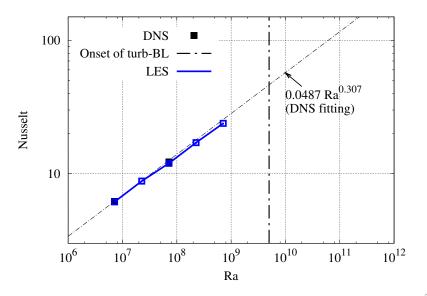
LES results at very low *Pr* number (on-going)

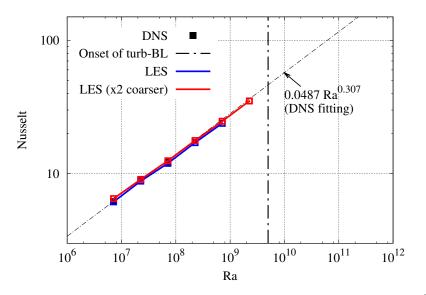


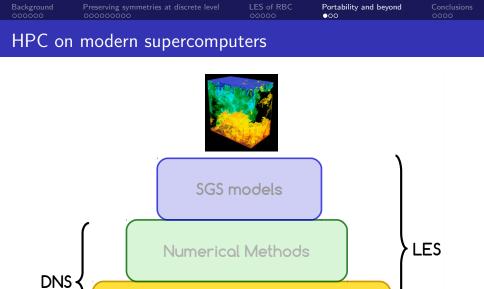
LES results at very low *Pr* number (on-going)



LES results at very low *Pr* number (on-going)







HPC (High Performance Computing)

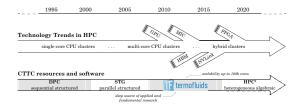
22 / 28

Background	Preserving symmetries at discrete level	LES of RBC	Portability and beyond	Conclusions
000000		00000	●00	0000

HPC on modern supercomputers

Research question #3:

• How can we develop **portable** and **efficient** CFD codes for large-scale simulations on modern supercomputers?



¹⁰X.Álvarez, A.Gorobets, F.X.Trias, R.Borrell, and G.Oyarzun. HPC² - a fully portable algebra-dominant framework for heterogeneous computing. Application to CFD. Computers & Fluids, 173:285-292, 2018

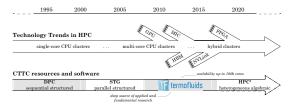
¹¹ Å.Alsalti-Baldellou, X.Álvarez-Farré, A.Oliva, F.X.Trias. Profiting spatial symmetries on solving the Poisson equation. Journal of Computational Physics (submitted)

Background	Preserving symmetries at discrete level	LES of RBC	Portability and beyond	Conclusions
000000		00000	●00	0000

HPC on modern supercomputers

Research question #3:

• How can we develop **portable** and **efficient** CFD codes for large-scale simulations on modern supercomputers?



HPC²: portable, algebra-based framework for heterogeneous computing is being developed¹⁰. Traditional stencil-based data and sweeps are replaced by algebraic structures (sparse matrices and vectors) and kernels. SpMM-based strategies to increase the arithmetic intensity are under development¹¹.

¹⁰X.Álvarez, A.Gorobets, F.X.Trias, R.Borrell, and G.Oyarzun. HPC² - a fully portable algebra-dominant framework for heterogeneous computing. Application to CFD. Computers & Fluids, 173:285-292, 2018

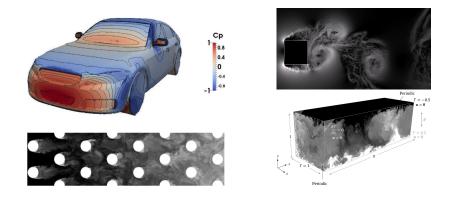
¹¹ Å.Alsalti-Baldellou, X.Álvarez-Farré, A.Oliva, F.X.Trias. Profiting spatial symmetries on solving the Poisson equation. Journal of Computational Physics (submitted)

Algebra-based approach naturally leads to portability, to simple and analyzable formulations

ContinuousDiscrete
$$\frac{\partial \boldsymbol{u}}{\partial t} + C(\boldsymbol{u}, \boldsymbol{u}) = \nu \nabla^2 \boldsymbol{u} - \nabla \boldsymbol{p}$$
 $\Omega \frac{d \boldsymbol{u}_h}{dt} + C(\boldsymbol{u}_h) \boldsymbol{u}_h = D \boldsymbol{u}_h - G \boldsymbol{p}_h$ $\nabla \cdot \boldsymbol{u} = 0$ $\boldsymbol{M} \boldsymbol{u}_h = \boldsymbol{0}_h$ $\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \int_{\Omega} \boldsymbol{a} \boldsymbol{b} d\Omega$ $\langle \boldsymbol{a}_h, \boldsymbol{b}_h \rangle_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$ $C(\boldsymbol{u}, \varphi_1), \varphi_2 \rangle = -\langle C(\boldsymbol{u}, \varphi_2), \varphi_1 \rangle$ $C(\boldsymbol{u}_h) = -C^T(\boldsymbol{u}_h)$ $\langle \nabla \cdot \boldsymbol{a}, \varphi \rangle = -\langle \boldsymbol{a}, \nabla \varphi \rangle$ $\Omega G = -M^T$ $\langle \nabla^2 \boldsymbol{a}, \boldsymbol{b} \rangle = \langle \boldsymbol{a}, \nabla^2 \boldsymbol{b} \rangle$ $D = D^T$

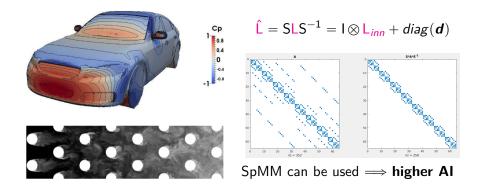
Algebra-based approach naturally leads to portability, to simple and analyzable formulations

ContinuousDiscrete
$$\frac{\partial \boldsymbol{u}}{\partial t} + C(\boldsymbol{u}, \boldsymbol{u}) = \nu \nabla^2 \boldsymbol{u} - \nabla \rho$$
 $\Omega \frac{d \boldsymbol{u}_h}{dt} + C(\boldsymbol{u}_h) \boldsymbol{u}_h = D \boldsymbol{u}_h - G \boldsymbol{\rho}_h$ $\nabla \cdot \boldsymbol{u} = 0$ $M \boldsymbol{u}_h = \boldsymbol{0}_h$ $\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \int_{\Omega} \boldsymbol{a} \boldsymbol{b} d\Omega$ Minimal set of kernels: $C(\boldsymbol{u}, \varphi_1), \varphi_2 \rangle = -\langle C(\boldsymbol{u}, \varphi_2), \varphi_1 \rangle$ $SpMM : \boldsymbol{y} \leftarrow A \boldsymbol{x}$ $\langle \nabla \cdot \boldsymbol{a}, \varphi \rangle = -\langle \boldsymbol{a}, \nabla \varphi \rangle$ $dot : \boldsymbol{r} \leftarrow \boldsymbol{x} \cdot \boldsymbol{y}$



¹²Å.Alsalti-Baldellou, X.Álvarez-Farré, A.Oliva, F.X.Trias. Profiting spatial symmetries on solving the Poisson equation. Journal of Computational Physics (submitted)

simple and analyzable formulations and opens the door to new strategies¹² to improve its perfomance...

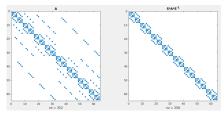


¹² Å.Alsalti-Baldellou, X.Álvarez-Farré, A.Oliva, F.X.Trias. Profiting spatial symmetries on solving the Poisson equation. Journal of Computational Physics (submitted)

Benefits for Poisson solver are 3-fold:

- Higher arithmetic intensity (AI)
- Reduction of memory footprint
- Reduction in the number of iterations

$$\hat{\mathsf{L}} = \mathsf{S}\mathsf{L}\mathsf{S}^{-1} = \mathsf{I} \otimes \mathsf{L}_{inn} + diag(\mathbf{d})$$



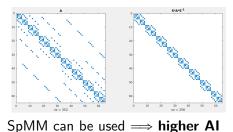
SpMM can be used \implies higher AI

¹² A.Alsalti-Baldellou, X.Álvarez-Farré, A.Oliva, F.X.Trias. Profiting spatial symmetries on solving the Poisson equation. Journal of Computational Physics (submitted)

Benefits for Poisson solver are 3-fold:

- Higher arithmetic intensity (AI)
- Reduction of memory footprint
- Reduction in the number of iterations
- \rightarrow Overall speed-up up to x2-x3 \checkmark \rightarrow Memory reduction of ≈ 2 \checkmark

$$\hat{\mathsf{L}} = \mathsf{S}\mathsf{L}\mathsf{S}^{-1} = \mathsf{I} \otimes \mathsf{L}_{inn} + diag(\boldsymbol{d})$$

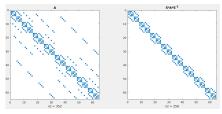


12 ÅAlsalti-Baldellou, X.Ålvarez-Farré, A.Oliva, F.X.Trias. Profiting spatial symmetries on solving the Poisson equation. Journal of Computational Physics (submitted)

Other SpMM-based strategies to **increase AI** and **reduce memory** footprint:

- Multiple transport equations
- Parametric studies
- Parallel-in-time simulations
- Go to higher-order?

$$\hat{\mathsf{L}} = \mathsf{SLS}^{-1} = \mathsf{I} \otimes \mathsf{L}_{inn} + diag(\mathbf{d})$$



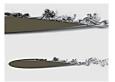
SpMM can be used \implies higher AI

¹² A.Alsalti-Baldellou, X.Álvarez-Farré, A.Oliva, F.X.Trias. *Profiting spatial symmetries on solving the Poisson equation.* Journal of Computational Physics (submitted)

Background 000000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions ●000

Concluding remarks

 Preserving symmetries either using staggered or collocated formulations is the key point for reliable LES/DNS simulations.



Background 000000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions •000

Concluding remarks

- Preserving symmetries either using staggered or collocated formulations is the key point for reliable LES/DNS simulations.
- Main drawback of collocated formulations: you either have checkerboard or some (small) amount of artificial dissipation due to pressure term.

Background 000000	Preserving symmetries at discrete level	LES of RBC 00000	Portability and beyond	Conclusions ●000

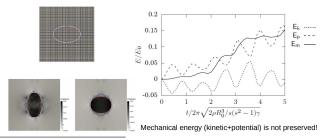
Concluding remarks

- Preserving symmetries either using staggered or collocated formulations is the key point for reliable LES/DNS simulations.
- Main drawback of collocated formulations: you either have checkerboard or some (small) amount of artificial dissipation due to pressure term.
- Algebra-based approach naturally leads to portability, to simple and analyzable formulations and opens the door to new strategies to improve its perfomance.

Marel 13

On-going (related) research

- Rethinking standard CFD operations (e.g. flux limiters¹³, CFL¹⁴,...) to adapt them into an algebraic framework (<u>Leitmotiv</u>: maintaining a minimal number of basic kernels is crucial for portability!!!)
- Symmetry-preserving formulations for multiphase flows¹⁵



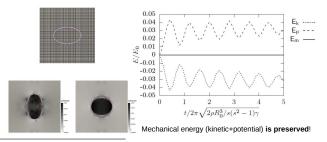
¹³N.Valle, X.Álvarez, A.Gorobets, J.Castro, A.Oliva, F.X.Trias. On the implementation of flux limiters in algebraic frameworks. **Computer Physics Communications**, 271:108230, 2022

¹⁴ F.X.Trias, X.Álvarez-Farré, À.Alsalti-Baldellou, A.Gorobets, and A.Oliva. An efficient eigenvalue bounding method: CFL condition revisited. Journal of Computational Physics (submitted)

 15 N.Valle, F.X.Trias, and J.Castro. An energy-preserving level set method for multiphase flows. Journal of Computational Physics, 400(1):108991, 2020 $_{26/28}$

On-going (related) research

- Rethinking standard CFD operations (*e.g.* flux limiters¹³, CFL¹⁴,...) to adapt them into an algebraic framework (*Leitmotiv*: maintaining a minimal number of basic kernels is crucial for portability!!!)
- Symmetry-preserving formulations for multiphase flows¹⁵



¹³N.Valle, X.Álvarez, A.Gorobets, J.Castro, A.Oliva, F.X.Trias. On the implementation of flux limiters in algebraic frameworks. Computer Physics Communications, 271:108230, 2022

 14 F.X. Trias, X. Álvarez-Farré, À. Alsalti-Baldellou, A. Gorobets, and A.Oliva. An efficient eigenvalue bounding method: CFL condition revisited. Journal of Computational Physics (submitted)

 15 N.Valle, F.X.Trias, and J.Castro. An energy-preserving level set method for multiphase flows. Journal of Computational Physics, 400(1):108991, 2020 $_{26/28}$

Preserving symmetries at discrete level

LES of RB(

Thank you for your virtual attendance

Open questions and ideas for roundtable discussion

- I. Discrete conservation and turbulence modeling Reconciling numerics with subgrid-scale modeling, ILES, LES, DES, ...
- II. Are we satisfied with the existing SGS models for LES? Do we need better models? Is eddy-viscosity/eddy-diffusivity assumption good enough?
- What is (if it is) preventing LES/WMLES/Hybrid RANS-LES techniques to be routinely used in industrial applications?
 Robustness, computational cost, proper mesh generation, grey-area (or similar) issues,...
- IV. We can preserve (kinetic) energy. What about other inviscid invariants such as enstrophy (in 2D) or helicity?
- V. What about time-integration methods? We tend to ignore their effect. Shall we use symplectic time-integration methods?
- VI. Is it possible to preserve linear momentum in multiphase flows?

