

Interactions between numerical discretization. subgrid modeling and filtering in LES

F. Xavier Trias

Heat and Mass Transfer Technological Center, Technical University of Catalonia (UPC)

Centre Tecnològic de Transferència de Calor
UNIVERSITAT POLITÈCNICA DE CATALUNYA

Interactions between numerical discretization, subgrid modeling and filtering in LES

F.Xavier Trias

Heat and Mass Transfer Technological Center, Technical University of Catalonia (UPC)

Background

Centre Tecnològic de Transferència de Calor UNIVERSITAT POLITÈCNICA DE CATALUNYA

Interactions between numerical discretization, subgrid modeling and filtering in LES

F.Xavier Trias

Heat and Mass Transfer Technological Center, Technical University of Catalonia (UPC)

Contents

- Background
- 2 Motivation
- Revisiting FVM
- 4 A rational length scale for LES
- Conclusions

Contents

Background

- Background
- 2 Motivation
- Revisiting FVM
- 4 A rational length scale for LES
- 6 Conclusions

Professional

Background

0000000

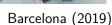
- Current position (since 2024): Full Professor at UPC
- Previous positions: PostDoc at University of Groningen (2007-2009) and UPC (2010-2013), Ramón y Cajal Senior Researcher at UPC (2013-2018) and Associate Professor (2018-2023).
- My research focus is on fluid mechanics, turbulence modeling, physics and numerics of complex flows, applied mathematics and numerical methods.
- Some numbers: 58 papers, 190 conferences, 12 PhD's+5 (on-going)
- Stays and collaborations: Groningen (Netherlands), UCLA, KIAM (Russian Academy of Sciences), Stanford, Tsinghua (China), TokioTech (Japan), Napoli (Italy), CWI (Netherlands),...
- More info: www.fxtrias.com

About myself...

... and more personal stuff

- My complete name: Francesc Xavier Trias Miquel
- Born in Barcelona
- My mother tongue is Catalan. I also speak Spanish at native level.
- Hobbies? I like my work but also sports. Most practiced ones are running and football:

Groningen (2009?)

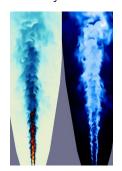


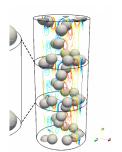
0000000

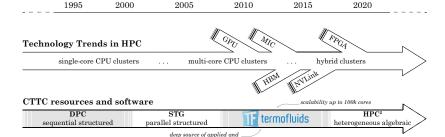
The CTTC research group

Heat and Mass Transfer Technological Center (Catalan: Centre Tecnològic de Transferència de Calor) has more than 30 years experience on CFD:

- Fundamental research on numerical methods, fluid dynamics and heat and mass transfer phenomena.
- Applied research on thermal and fluid dynamic optimization of thermal system and equipment.



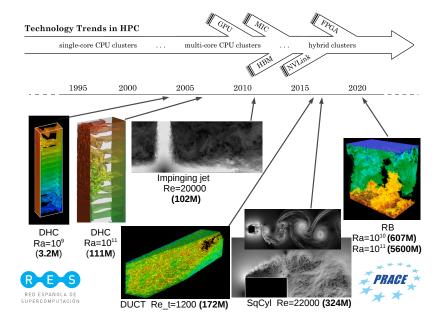




fundamental research

Background 0000000

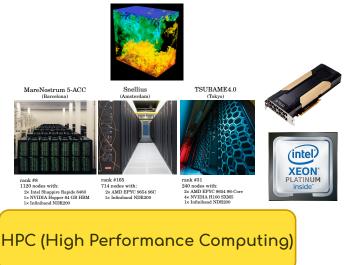
Background 00000●0



General motivation: (very) large-scale DNS/LES

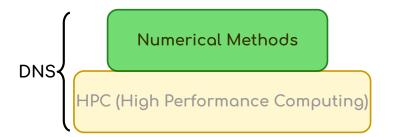
DNS

General motivation: (very) large-scale DNS/LES



General motivation: (very) large-scale DNS/LES

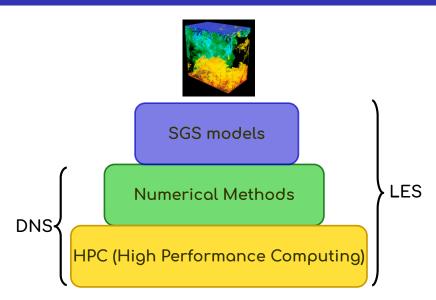
How to properly discretize NS?



General motivation: (very) large-scale DNS/LES

How to properly model SGS? SGS models **LFS** Numerical Methods **DNS** HPC (High Performance Computing)

General motivation: (very) large-scale DNS/LES



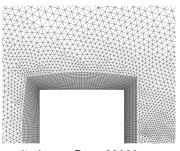
Contents

- Motivation

Motivation

Research question #1:

• What are we indeed solving with finite volume method?

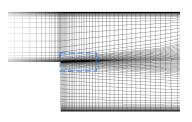


 DNS^1 of the turbulent flow around a square cylinder at Re = 22000

¹F.X.Trias, A.Gorobets, A.Oliva. *Turbulent flow around a square cylinder at Reynolds number 22000: a DNS study*, **Computers&Fluids**, 123:87-98, 2015.

Research question #1:

• What are we indeed solving with finite volume method?



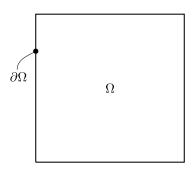
DNS² of backward-facing step at $Re_{\tau} = 395$ and expansion ratio 2

²A.Pont-Vílchez, F.X.Trias, A.Gorobets, A.Oliva. DNS of Backward-Facing Step flow at $Re_{\tau} = 395$ and expansion ratio 2. Journal of Fluid Mechanics, 863:341-363, 2019.

Motivation

Research question #2:

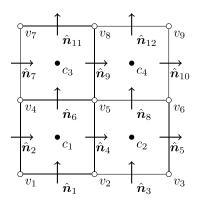
• What are we interpolating? What is the correct interpretation?



Motivation

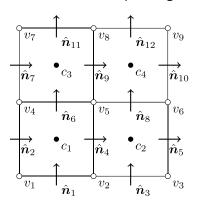
Research question #2:

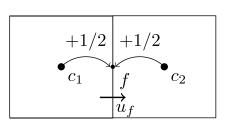
• What are we interpolating? What is the correct interpretation?



Research question #2:

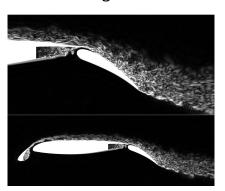
• What are we interpolating? What is the correct interpretation?

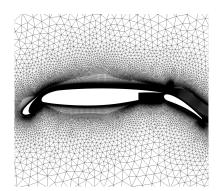




Research question #3:

• Can we developed high-order symmetry-preserving schemes for unstructured grids?

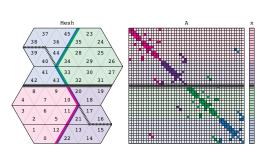


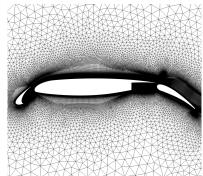


Motivation

Research question #3:

 Can we developed high-order symmetry-preserving schemes for unstructured grids? And, therefore, get better performance





Reminder: symmetry-preserving discretization

Continuous

$$\frac{\partial \mathbf{u}}{\partial t} + C(\mathbf{u}, \mathbf{u}) = \nu \nabla^2 \mathbf{u} - \nabla \mathbf{p}$$
$$\nabla \cdot \mathbf{u} = 0$$

Continuous

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{C}(\mathbf{u}, \mathbf{u}) = \nu \nabla^2 \mathbf{u} - \nabla \mathbf{p}$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{C}(\boldsymbol{u}, \boldsymbol{u}) = \nu \nabla^2 \boldsymbol{u} - \nabla p \qquad \Omega \frac{d\boldsymbol{u}_h}{dt} + \boldsymbol{C}(\boldsymbol{u}_h) \boldsymbol{u}_h = \boldsymbol{D} \boldsymbol{u}_h - \boldsymbol{G}_h \boldsymbol{p}_h$$

$$\nabla \cdot \boldsymbol{u} = 0 \qquad \qquad \boldsymbol{M} \boldsymbol{u}_h = \boldsymbol{0}_h$$

Reminder: symmetry-preserving discretization

Continuous

$$\frac{\partial \mathbf{u}}{\partial t} + C(\mathbf{u}, \mathbf{u}) = \nu \nabla^2 \mathbf{u} - \nabla p$$
$$\nabla \cdot \mathbf{u} = 0$$

$$(\mathbf{a}, \mathbf{b}) = \int_{\Omega} \mathbf{a} \mathbf{b} d\Omega$$

$$\Omega \frac{d\mathbf{u}_h}{dt} + C(\mathbf{u}_h) \mathbf{u}_h = \mathbf{D}\mathbf{u}_h - \mathbf{G}_h \mathbf{p}_h$$
$$\mathbf{M}\mathbf{u}_h = \mathbf{0}_h$$

$$(\boldsymbol{a}_h, \boldsymbol{b}_h)_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$$

Reminder: symmetry-preserving discretization

Continuous

$$\frac{\partial \mathbf{u}}{\partial t} + C(\mathbf{u}, \mathbf{u}) = \nu \nabla^2 \mathbf{u} - \nabla p$$
$$\nabla \cdot \mathbf{u} = 0$$

$$(\mathbf{a}, \mathbf{b}) = \int_{\Omega} \mathbf{a} \mathbf{b} d\Omega$$

$$(C(\mathbf{u},\phi_1),\phi_2) = -(C(\mathbf{u},\phi_2),\phi_1)$$

$$\Omega \frac{d\boldsymbol{u}_h}{dt} + C(\boldsymbol{u}_h) \boldsymbol{u}_h = D\boldsymbol{u}_h - G_h \boldsymbol{p}_h$$

$$M\boldsymbol{u}_h = \boldsymbol{0}_h$$

$$(\boldsymbol{a}_h, \boldsymbol{b}_h)_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$$

$$C\left(\boldsymbol{u}_{h}\right)=-C^{T}\left(\boldsymbol{u}_{h}\right)$$

Reminder: symmetry-preserving discretization

Continuous

$$\frac{\partial \mathbf{u}}{\partial t} + C(\mathbf{u}, \mathbf{u}) = \nu \nabla^2 \mathbf{u} - \nabla p$$
$$\nabla \cdot \mathbf{u} = 0$$

$$(\boldsymbol{a}, \boldsymbol{b}) = \int_{\Omega} \boldsymbol{a} \boldsymbol{b} d\Omega$$

$$(C(\mathbf{u}, \phi_1), \phi_2) = -(C(\mathbf{u}, \phi_2), \phi_1)$$
$$(\nabla \cdot \mathbf{a}, \phi) = -(\mathbf{a}, \nabla \phi)$$

$$\Omega \frac{d\boldsymbol{u}_h}{dt} + C(\boldsymbol{u}_h) \boldsymbol{u}_h = D\boldsymbol{u}_h - G_h \boldsymbol{p}_h$$
$$M\boldsymbol{u}_h = \boldsymbol{0}_h$$

$$(\boldsymbol{a}_h, \boldsymbol{b}_h)_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$$

$$C(\boldsymbol{u}_h) = -C^T(\boldsymbol{u}_h)$$
$$\Omega G_h = -M^T$$

Reminder: symmetry-preserving discretization

Continuous

$$\frac{\partial \mathbf{u}}{\partial t} + C(\mathbf{u}, \mathbf{u}) = \nu \nabla^2 \mathbf{u} - \nabla p$$
$$\nabla \cdot \mathbf{u} = 0$$

$$(\boldsymbol{a}, \boldsymbol{b}) = \int_{\Omega} \boldsymbol{a} \boldsymbol{b} d\Omega$$

$$(C(\mathbf{u}, \phi_1), \phi_2) = -(C(\mathbf{u}, \phi_2), \phi_1)$$
$$(\nabla \cdot \mathbf{a}, \phi) = -(\mathbf{a}, \nabla \phi)$$
$$(\nabla^2 \mathbf{a}, \mathbf{b}) = (\mathbf{a}, \nabla^2 \mathbf{b})$$

$$\Omega \frac{d\mathbf{u}_h}{dt} + \mathbf{C}(\mathbf{u}_h) \mathbf{u}_h = \mathbf{D}\mathbf{u}_h - \mathbf{G}_h \mathbf{p}_h$$
$$\mathbf{M}\mathbf{u}_h = \mathbf{0}_h$$

$$(\boldsymbol{a}_h, \boldsymbol{b}_h)_h = \boldsymbol{a}_h^T \Omega \boldsymbol{b}_h$$

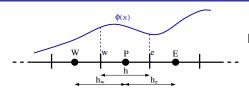
$$C(\mathbf{u}_h) = -C^T(\mathbf{u}_h)$$

$$\Omega G_h = -M^T$$

$$D = D^T \quad def - C^T(\mathbf{u}_h)$$

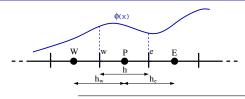
Contents

- Revisiting FVM



$$\overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

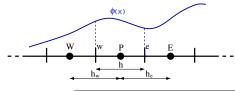
$$\partial_x \overline{\phi}|_e = \overline{\partial_x \phi}|_e = (\phi_E - \phi_P)/h_e$$



$$\overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

$$\partial_{\mathsf{x}}\overline{\phi}|_{\mathsf{e}} = \overline{\partial_{\mathsf{x}}\phi}|_{\mathsf{e}} = (\phi_{\mathsf{E}} - \phi_{\mathsf{P}})/h_{\mathsf{e}}$$

$$\frac{\partial \phi}{\partial t} + \frac{\partial (\mathbf{u}\phi)}{\partial x} = \nu \frac{\partial^2 \phi}{\partial x^2}$$



Box filter:

$$\overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

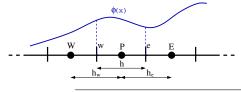
$$\partial_{\mathsf{x}}\overline{\phi}|_{\mathsf{e}} = \overline{\partial_{\mathsf{x}}\phi}|_{\mathsf{e}} = (\phi_{\mathsf{E}} - \phi_{\mathsf{P}})/h_{\mathsf{e}}$$

$$\frac{\partial \phi}{\partial t} + \frac{\partial (\mathbf{u}\phi)}{\partial x} = \nu \frac{\partial^2 \phi}{\partial x^2} \quad -$$

$$\boxed{\frac{\partial \overline{\phi}}{\partial t} + \overline{\frac{\partial (\mathbf{u}\phi)}{\partial x}} = \nu \overline{\frac{\partial^2 \phi}{\partial x^2}}}$$

Exact FVM eq!

Background



$$\overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

$$\partial_{\mathbf{x}}\overline{\phi}|_{\mathbf{e}} = \overline{\partial_{\mathbf{x}}\phi}|_{\mathbf{e}} = (\phi_{\mathbf{E}} - \phi_{\mathbf{P}})/h_{\mathbf{e}}$$

$$\frac{\partial \phi}{\partial t} + \frac{\partial (\mathbf{u}\phi)}{\partial x} = \nu \frac{\partial^2 \phi}{\partial x^2} \longrightarrow \boxed{\frac{\partial \overline{\phi}}{\partial t} + \overline{\frac{\partial (\mathbf{u}\phi)}{\partial x}} = \nu \overline{\frac{\partial^2 \phi}{\partial x^2}}} \text{ Exact FVM eq!}$$

$$h\frac{\partial\overline{\phi}_{P}}{\partial t} + (\mathbf{u}\phi)_{e} - (\mathbf{u}\phi)_{w} = \nu \left(\frac{\partial\phi}{\partial x} \Big|_{e} - \frac{\partial\phi}{\partial x} \Big|_{w} \right)$$

$$\overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

$$\partial_{\mathsf{x}}\overline{\phi}|_{\mathsf{e}} = \overline{\partial_{\mathsf{x}}\phi}|_{\mathsf{e}} = (\phi_{\mathsf{E}} - \phi_{\mathsf{P}})/h_{\mathsf{e}}$$

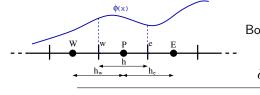
$$\frac{\partial \phi}{\partial t} + \frac{\partial (\mathbf{u}\phi)}{\partial x} = \nu \frac{\partial^2 \phi}{\partial x^2} \longrightarrow \left| \frac{\partial \overline{\phi}}{\partial t} + \frac{\overline{\partial (\mathbf{u}\phi)}}{\partial x} \right| = \nu \frac{\overline{\partial^2 \phi}}{\partial x^2} \quad \text{Exact FVM eq!}$$

$$h\frac{\partial \overline{\phi}_{P}}{\partial t} + (\mathbf{u}\phi)_{e} - (\mathbf{u}\phi)_{w} = \nu \left(\frac{\partial \phi}{\partial x} \Big|_{e} - \frac{\partial \phi}{\partial x} \Big|_{w} \right)$$

$$\frac{1}{\partial t} + (\mathbf{u}\phi)_{e} - (\mathbf{u}\phi)_{w} - \nu \left(\frac{\partial}{\partial x} \Big|_{e} - \frac{\partial}{\partial x} \Big|_{w} \right)$$

$$\int \partial \overline{\phi}_{P}$$

$$\boxed{\frac{\partial \overline{\phi}}{\partial t} + } =$$



$$\overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

$$\partial_{\mathsf{x}}\overline{\phi}|_{\mathsf{e}} = \overline{\partial_{\mathsf{x}}\phi}|_{\mathsf{e}} = (\phi_{\mathsf{E}} - \phi_{\mathsf{P}})/h_{\mathsf{e}}$$

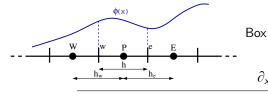
$$\frac{\partial \phi}{\partial t} + \frac{\partial (\mathbf{u}\phi)}{\partial x} = \nu \frac{\partial^2 \phi}{\partial x^2} \longrightarrow \left| \frac{\partial \overline{\phi}}{\partial t} + \frac{\overline{\partial (\mathbf{u}\phi)}}{\partial x} \right| = \nu \frac{\overline{\partial^2 \phi}}{\partial x^2} \quad \text{Exact FVM eq!}$$

$$h\frac{\partial\overline{\phi}_{P}}{\partial t} + (\mathbf{u}\phi)_{e} - (\mathbf{u}\phi)_{w} = \nu \left(\frac{\partial\phi}{\partial x} \Big|_{e} - \frac{\partial\phi}{\partial x} \Big|_{w} \right)$$
$$= \nu \left(\frac{\overline{\phi}_{E} - \overline{\phi}_{P}}{h_{e}} - \frac{\overline{\phi}_{P} - \overline{\phi}_{W}}{h_{w}} \right)$$

$$\boxed{\frac{\partial \overline{\phi}}{\partial t} + = \nu \frac{\overline{\frac{\partial^2 \overline{\overline{\phi}}}{\overline{\phi}}}}{\partial x^2}}$$

Revisiting FVM

Background



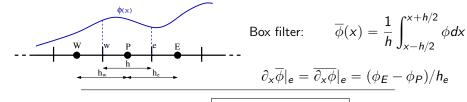
$$\overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

$$\partial_x \overline{\phi}|_e = \overline{\partial_x \phi}|_e = (\phi_E - \phi_P)/h_e$$

$$\frac{\partial \phi}{\partial t} + \frac{\partial (\mathbf{u}\phi)}{\partial x} = \nu \frac{\partial^2 \phi}{\partial x^2} \longrightarrow \left| \frac{\partial \overline{\phi}}{\partial t} + \frac{\overline{\partial (\mathbf{u}\phi)}}{\partial x} \right| = \nu \frac{\overline{\partial^2 \phi}}{\overline{\partial x^2}}$$
 Exact FVM eq!

$$\begin{split} h\frac{\partial\overline{\phi}_{P}}{\partial t} + (\textbf{\textit{u}}\phi)_{e} - (\textbf{\textit{u}}\phi)_{w} &= \nu \left(\left. \frac{\partial\phi}{\partial x} \right|_{e} - \left. \frac{\partial\phi}{\partial x} \right|_{w} \right) \\ h\frac{\partial\overline{\phi}_{P}}{\partial t} + \textbf{\textit{u}}_{e}\frac{\overline{\phi}_{P} + \overline{\phi}_{E}}{2} - \textbf{\textit{u}}_{w}\frac{\overline{\phi}_{W} + \overline{\phi}_{P}}{2} &= \nu \left(\frac{\overline{\phi}_{E} - \overline{\phi}_{P}}{h_{e}} - \frac{\overline{\phi}_{P} - \overline{\phi}_{W}}{h_{w}} \right) \end{split}$$

$$\boxed{\frac{\partial \overline{\phi}}{\partial t} + \overline{\frac{\partial (\mathbf{u}\overline{\phi})}{\partial x}} = \nu \overline{\frac{\partial^2 \overline{\overline{\phi}}}{\partial x^2}}}$$



$$\frac{\partial \phi}{\partial t} + \frac{\partial (\mathbf{u}\phi)}{\partial x} = \nu \frac{\partial^2 \phi}{\partial x^2} \longrightarrow \left| \frac{\partial \overline{\phi}}{\partial t} + \overline{\frac{\partial (\mathbf{u}\phi)}{\partial x}} \right| = \nu \frac{\overline{\partial^2 \phi}}{\overline{\partial x^2}} \quad \text{Exact FVM eq!}$$

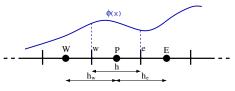
$$\begin{split} h\frac{\partial\overline{\phi}_{P}}{\partial t} + (\textbf{\textit{u}}\phi)_{e} - (\textbf{\textit{u}}\phi)_{w} &= \nu \left(\left. \frac{\partial\phi}{\partial x} \right|_{e} - \left. \frac{\partial\phi}{\partial x} \right|_{w} \right) \\ h\frac{\partial\overline{\phi}_{P}}{\partial t} + \textbf{\textit{u}}_{e} \frac{\overline{\phi}_{P} + \overline{\phi}_{E}}{2} - \textbf{\textit{u}}_{w} \frac{\overline{\phi}_{W} + \overline{\phi}_{P}}{2} &= \nu \left(\frac{\overline{\phi}_{E} - \overline{\phi}_{P}}{h_{e}} - \frac{\overline{\phi}_{P} - \overline{\phi}_{W}}{h_{w}} \right) \end{split}$$

$$\frac{\partial \overline{\phi}}{\partial t} + \frac{\partial (\mathbf{u} \widetilde{\phi})}{\partial x} = \nu \frac{\partial^2 \overline{\phi}}{\partial x^2}$$

 $\frac{\partial \overline{\phi}}{\partial z} + \frac{\partial (\mathbf{u} \overline{\phi})}{\partial z} = \nu \frac{\partial^2 \overline{\phi}}{\partial z^2} \bigg| \qquad \text{where } \widetilde{\phi}_e = \frac{\overline{\phi}_P + \overline{\phi}_E}{2} = \overline{\phi}_e + \mathcal{O}(h^2)$

Revisiting FVM

Background



Box filter:

$$\overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

$$\partial_{\mathsf{x}}\overline{\phi}|_{\mathsf{e}} = \overline{\partial_{\mathsf{x}}\phi}|_{\mathsf{e}} = (\phi_{\mathsf{E}} - \phi_{\mathsf{P}})/h_{\mathsf{e}}$$

In summary (assuming that u is known):

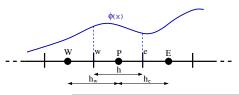
$$\frac{\partial \overline{\phi}}{\partial t} + \frac{\overline{\partial (\mathbf{u}\phi)}}{\partial x} = \nu \frac{\overline{\partial^2 \phi}}{\partial x^2}$$

Instead, we are solving (in a 2^{nd} -order symmetry-preserving discretization):

$$\frac{\partial \overline{\phi}}{\partial t} + \frac{\overline{\partial (\mathbf{u}\overline{\phi})}}{\partial x} = \nu \frac{\overline{\partial^2 \overline{\phi}}}{\partial x^2}$$

Revisiting FVM

Background



Box filter:
$$\varphi \equiv \overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

$$\partial_{\mathsf{x}}\overline{\phi}|_{\mathsf{e}} = \overline{\partial_{\mathsf{x}}\phi}|_{\mathsf{e}} = (\phi_{\mathsf{E}} - \phi_{\mathsf{P}})/h_{\mathsf{e}}$$

In summary (assuming that u is known):

$$\frac{\partial \overline{\phi}}{\partial t} + \overline{\frac{\partial (\mathbf{u}\phi)}{\partial x}} = \nu \overline{\frac{\partial^2 \phi}{\partial x^2}} \quad \longrightarrow \quad \overline{\left(\frac{\partial \varphi}{\partial t} + \frac{\partial (\mathbf{u}\varphi)}{\partial x} = \nu \frac{\partial^2 \varphi}{\partial x^2}\right)} \quad \text{Exact FVM eq!}$$

$$\boxed{\frac{\partial \varphi}{\partial t} + \frac{\partial (\mathbf{u}\varphi)}{\partial x} = \nu \frac{\partial^2 \varphi}{\partial x^2}}$$

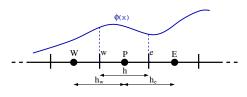
Instead, we are solving (in a 2^{nd} -order symmetry-preserving discretization):

$$\frac{\partial \overline{\phi}}{\partial t} + \frac{\overline{\partial (\mathbf{u}\overline{\phi})}}{\partial x} = \nu \frac{\overline{\partial^2 \overline{\phi}}}{\partial x^2} \longrightarrow \overline{\partial \varphi} + \frac{\overline{\partial (\mathbf{u}\overline{\varphi})}}{\partial x} = \nu \frac{\overline{\partial^2 \overline{\varphi}}}{\partial x^2}$$

$$\boxed{\frac{\partial \varphi}{\partial t} + \frac{\overline{\partial (\mathbf{u}\overline{\varphi})}}{\partial x} = \nu \frac{\overline{\partial^2 \overline{\varphi}}}{\partial x^2}}$$

Approx FVM eq!

Towards high-order via deconvolution



Box filter:
$$\varphi \equiv \overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

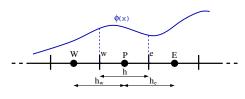
$$\partial_{\mathsf{x}}\overline{\phi}|_{\mathsf{e}} = \overline{\partial_{\mathsf{x}}\phi}|_{\mathsf{e}} = (\phi_{\mathsf{E}} - \phi_{\mathsf{P}})/h_{\mathsf{e}}$$

Hence, the standard 2nd-order symmetry-preserving FVM can be viewed as

$$\frac{\partial^2 \varphi}{\partial x^2} \approx \frac{\partial^2 \overline{\varphi}}{\partial x^2} + \mathcal{O}(h^2)$$
 where $\frac{\partial^2 \overline{\varphi}}{\partial x^2} = \frac{\varphi_E - 2\varphi_P + \varphi_W}{h^2}$

$$\frac{\partial^2 \overline{\varphi}}{\partial x^2} = \frac{\varphi_E - 2\varphi_P + \varphi_W}{h^2}$$

Towards high-order via deconvolution



Box filter:
$$\varphi \equiv \overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

$$\partial_x \overline{\phi}|_e = \overline{\partial_x \phi}|_e = (\phi_E - \phi_P)/h_e$$

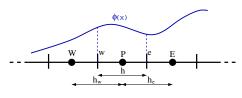
Hence, the standard 2^{nd} -order symmetry-preserving FVM can be viewed as

$$\frac{\partial^2 \varphi}{\partial x^2} \approx \frac{\overline{\partial^2 \overline{\varphi}}}{\overline{\partial x^2}} + \mathcal{O}(h^2)$$
 where $\frac{\overline{\partial^2 \overline{\varphi}}}{\partial x^2} = \frac{\varphi_E - 2\varphi_P + \varphi_W}{h^2}$

Recalling that $\phi = \overline{\phi} + \phi'$

$$\frac{\partial^2 \varphi}{\partial x^2} = \frac{\overline{\partial^2 \overline{\varphi}}}{\partial x^2} + \overline{\frac{\partial^2 \varphi'}{\partial x^2}} + \left(\frac{\partial^2 \overline{\varphi}}{\partial x^2}\right)' + \left(\frac{\partial^2 \varphi'}{\partial x^2}\right)'$$

Towards high-order via deconvolution



Box filter:
$$\varphi \equiv \overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

$$\partial_x \overline{\phi}|_e = \overline{\partial_x \phi}|_e = (\phi_E - \phi_P)/h_e$$

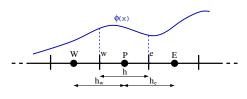
Hence, the standard 2nd-order symmetry-preserving FVM can be viewed as

$$\frac{\partial^2 \varphi}{\partial x^2} \approx \frac{\overline{\partial^2 \overline{\varphi}}}{\overline{\partial x^2}} + \mathcal{O}(h^2)$$
 where $\frac{\overline{\partial^2 \overline{\varphi}}}{\partial x^2} = \frac{\varphi_E - 2\varphi_P + \varphi_W}{h^2}$

Recalling that $\phi = \overline{\phi} + \phi'$ and $\phi'_P \approx -\frac{1}{24}(\varphi_E - 2\varphi_P + \varphi_W) + \mathcal{O}(h^2)$

$$\frac{\partial^2 \varphi}{\partial x^2} = \frac{\overline{\partial^2 \overline{\varphi}}}{\overline{\partial x^2}} + \frac{\overline{\partial^2 \varphi'}}{\overline{\partial x^2}} + \left(\frac{\partial^2 \overline{\varphi}}{\partial x^2}\right)' + \mathcal{O}(h^4)$$

Towards high-order via deconvolution



Box filter:
$$\varphi \equiv \overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

$$\partial_x \overline{\phi}|_e = \overline{\partial_x \phi}|_e = (\phi_E - \phi_P)/h_e$$

Hence, the standard $2^{\textit{nd}}$ -order symmetry-preserving FVM can be viewed as

$$\frac{\partial^2 \varphi}{\partial x^2} \approx \frac{\overline{\partial^2 \overline{\varphi}}}{\overline{\partial x^2}} + \mathcal{O}(h^2)$$
 where $\frac{\overline{\partial^2 \overline{\varphi}}}{\partial x^2} = \frac{\varphi_E - 2\varphi_P + \varphi_W}{h^2}$

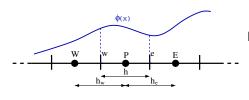
Recalling that $\phi=\overline{\phi}+\phi'$ and $\phi_P'\approx-\frac{1}{24}(\varphi_E-2\varphi_P+\varphi_W)+\mathcal{O}(h^2)$

$$\frac{\partial^2 \varphi}{\partial x^2} = \frac{\overline{\partial^2 \overline{\varphi}}}{\partial x^2} + \frac{\overline{\partial^2 \varphi'}}{\partial x^2} + \left(\frac{\partial^2 \overline{\varphi}}{\partial x^2}\right)' + \mathcal{O}(h^4)$$

$$\frac{\partial^2 \varphi}{\partial x^2} = \frac{\varphi_F - 2\varphi_P + \varphi_W}{2} - \varphi_{FF} + 4\varphi_{FF}$$

$$\frac{\partial^2 \varphi}{\partial x^2} \approx \frac{\varphi_E - 2\varphi_P + \varphi_W}{h^2} + 2\frac{-\varphi_{EE} + 4\varphi_E - 6\varphi_P + 4\varphi_W - \varphi_{WW}}{24h^2}$$

Towards high-order via deconvolution



Box filter:
$$\varphi \equiv \overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

$$\partial_x \overline{\phi}|_e = \overline{\partial_x \phi}|_e = (\phi_E - \phi_P)/h_e$$

Hence, the standard $2^{\textit{nd}}$ -order symmetry-preserving FVM can be viewed as

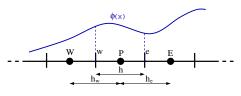
$$\frac{\partial^2 \varphi}{\partial x^2} \approx \frac{\overline{\partial^2 \overline{\varphi}}}{\overline{\partial x^2}} + \mathcal{O}(h^2)$$
 where $\frac{\overline{\partial^2 \overline{\varphi}}}{\partial x^2} = \frac{\varphi_E - 2\varphi_P + \varphi_W}{h^2}$

Recalling that $\phi=\overline{\phi}+\phi'$ and $\phi_P'\approx-\frac{1}{24}(\varphi_E-2\varphi_P+\varphi_W)+\mathcal{O}(h^2)$

$$\frac{\partial^{2} \varphi}{\partial x^{2}} = \frac{\overline{\partial^{2} \overline{\varphi}}}{\partial x^{2}} + \frac{\overline{\partial^{2} \varphi'}}{\partial x^{2}} + \left(\frac{\partial^{2} \overline{\varphi}}{\partial x^{2}}\right)' + \mathcal{O}(h^{4})$$

$$\frac{\partial^{2} \varphi}{\partial x^{2}} \approx \frac{-\varphi_{EE} + 16\varphi_{E} - 30\varphi_{P} + 16\varphi_{W} - \varphi_{WW}}{12h^{2}} + \mathcal{O}(h^{4})$$

Towards high-order via deconvolution



Box filter:
$$\varphi \equiv \overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

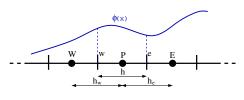
$$\partial_{\mathsf{x}}\overline{\phi}|_{\mathsf{e}} = \overline{\partial_{\mathsf{x}}\phi}|_{\mathsf{e}} = (\phi_{\mathsf{E}} - \phi_{\mathsf{P}})/h_{\mathsf{e}}$$

In summary, in 1D we have:

$$\frac{\partial^{2} \varphi}{\partial x^{2}} = \frac{\overline{\partial^{2} \overline{\varphi}}}{\partial x^{2}} + \frac{\overline{\partial^{2} \varphi'}}{\partial x^{2}} + \left(\frac{\partial^{2} \overline{\varphi}}{\partial x^{2}}\right)' + \mathcal{O}(h^{4})$$

$$\frac{\partial^{2} \varphi}{\partial x^{2}} \approx \frac{-\varphi_{EE} + 16\varphi_{E} - 30\varphi_{P} + 16\varphi_{W} - \varphi_{WW}}{12h^{2}} + \mathcal{O}(h^{4})$$

Towards high-order via deconvolution



Box filter: $\varphi \equiv \overline{\phi}(x) = \frac{1}{h} \int_{x=h/2}^{x+h/2} \phi dx$

$$\partial_{\mathsf{x}}\overline{\phi}|_{\mathsf{e}} = \overline{\partial_{\mathsf{x}}\phi}|_{\mathsf{e}} = (\phi_{\mathsf{E}} - \phi_{\mathsf{P}})/h_{\mathsf{e}}$$

In summary, in 1D we have:

$$\frac{\partial^{2} \varphi}{\partial x^{2}} = \frac{\overline{\partial^{2} \overline{\varphi}}}{\partial x^{2}} + \frac{\overline{\partial^{2} \varphi'}}{\partial x^{2}} + \left(\frac{\partial^{2} \overline{\varphi}}{\partial x^{2}}\right)' + \mathcal{O}(h^{4})$$

$$\frac{\partial^{2} \varphi}{\partial x^{2}} \approx \frac{-\varphi_{EE} + 16\varphi_{E} - 30\varphi_{P} + 16\varphi_{W} - \varphi_{WW}}{12h^{2}} + \mathcal{O}(h^{4})$$

This can be extended to 2D/3D (notice that $\varphi' = -\frac{h^2}{24}\nabla^2\varphi + \mathcal{O}(h^4)$)

$$\boxed{ \nabla^2 \varphi = \overline{\nabla^2 \overline{\varphi}} + \overline{\nabla^2 \varphi'} + (\nabla^2 \overline{\varphi})' + \mathcal{O}(\mathit{h}^4) }$$

Contents

- 4 A rational length scale for LES

000000000

Subgrid characteristic length for LES: state of the art

$$\partial_{t}\overline{\boldsymbol{u}} + (\overline{\boldsymbol{u}} \cdot \nabla)\overline{\boldsymbol{u}} = \nabla^{2}\overline{\boldsymbol{u}} - \nabla\overline{\boldsymbol{p}} - \nabla \cdot \boldsymbol{\tau}(\overline{\boldsymbol{u}}) ; \quad \nabla \cdot \overline{\boldsymbol{u}} = 0$$
eddy-viscosity $\longrightarrow \boldsymbol{\tau} (\overline{\boldsymbol{u}}) = -2\nu_{t}S(\overline{\boldsymbol{u}})$

³F.X.Trias, D.Folch, A.Gorobets, A.Oliva. Building proper invariants for eddy-viscosity subgrid-scale models, Physics of Fluids, 27: 065103, 2015.

⁴M.Silvis, R.Remmerswaal, R.Verstappen, **Physics of Fluids**, 29: 015105, 2017.

$$\begin{split} \partial_t \overline{\boldsymbol{u}} + (\overline{\boldsymbol{u}} \cdot \nabla) \overline{\boldsymbol{u}} &= \nabla^2 \overline{\boldsymbol{u}} - \nabla \overline{\boldsymbol{p}} - \nabla \cdot \boldsymbol{\tau}(\overline{\boldsymbol{u}}) \; ; \quad \nabla \cdot \overline{\boldsymbol{u}} = 0 \\ \text{eddy-viscosity} &\longrightarrow \boldsymbol{\tau} \; (\overline{\boldsymbol{u}}) = -2\nu_t S(\overline{\boldsymbol{u}}) \end{split}$$

³F.X.Trias, D.Folch, A.Gorobets, A.Oliva. *Building proper invariants for eddy-viscosity subgrid-scale models*, **Physics of Fluids**, 27: 065103, 2015.

⁴M.Silvis, R.Remmerswaal, R.Verstappen, **Physics of Fluids**, 29: 015105, 2017.

000000000

Subgrid characteristic length for LES: state of the art

$$\partial_{t}\overline{\boldsymbol{u}} + (\overline{\boldsymbol{u}} \cdot \nabla)\overline{\boldsymbol{u}} = \nabla^{2}\overline{\boldsymbol{u}} - \nabla\overline{\boldsymbol{p}} - \nabla \cdot \boldsymbol{\tau}(\overline{\boldsymbol{u}}) \; ; \qquad \nabla \cdot \overline{\boldsymbol{u}} = 0$$
 eddy-viscosity $\longrightarrow \boldsymbol{\tau} \; (\overline{\boldsymbol{u}}) = -2\nu_{t}S(\overline{\boldsymbol{u}})$

$$\nu_t = (C_m \delta)^2 D_m(\overline{\boldsymbol{u}})$$

 $D_m(\overline{u}) \longrightarrow \text{Smagorinsky (1963), WALE (1999), Vreman (2004),}$ QR-model (2011), σ -model (2011), S3PQR³ (2015), vortex-stretching-based model⁴ (2017)

³F.X.Trias, D.Folch, A.Gorobets, A.Oliva. Building proper invariants for eddy-viscosity subgrid-scale models, Physics of Fluids, 27: 065103, 2015.

⁴M.Silvis, R.Remmerswaal, R.Verstappen, **Physics of Fluids**, 29: 015105, 2017.

Subgrid characteristic length for LES: state of the art

$$\begin{array}{l} \partial_t \overline{\boldsymbol{u}} + (\overline{\boldsymbol{u}} \cdot \nabla) \overline{\boldsymbol{u}} = \nabla^2 \overline{\boldsymbol{u}} - \nabla \overline{\boldsymbol{p}} - \nabla \cdot \boldsymbol{\tau}(\overline{\boldsymbol{u}}) \; ; \quad \nabla \cdot \overline{\boldsymbol{u}} = 0 \\ \text{eddy-viscosity} & \longrightarrow & \boldsymbol{\tau} \; (\overline{\boldsymbol{u}}) = -2\nu_t S(\overline{\boldsymbol{u}}) \end{array}$$

$$\nu_t = (C_m \delta)^2 D_m(\overline{\boldsymbol{u}})$$

- $D_m(\overline{u}) \longrightarrow \text{Smagorinsky (1963), WALE (1999), Vreman (2004),}$ QR-model (2011), σ -model (2011), S3PQR³ (2015), vortex-stretching-based model⁴ (2017)
- $C_m \longrightarrow Germano's dynamic model (1991), Lagrangian dynamic (1995),$ Global dynamic approach (2006)

³F.X.Trias, D.Folch, A.Gorobets, A.Oliva. Building proper invariants for eddy-viscosity subgrid-scale models, Physics of Fluids, 27: 065103, 2015.

⁴M.Silvis, R.Remmerswaal, R.Verstappen, **Physics of Fluids**, 29: 015105, 2017.

Subgrid characteristic length for LES: state of the art

$$\partial_{t}\overline{\boldsymbol{u}} + (\overline{\boldsymbol{u}}\cdot\nabla)\overline{\boldsymbol{u}} = \nabla^{2}\overline{\boldsymbol{u}} - \nabla\overline{\boldsymbol{p}} - \nabla\cdot\boldsymbol{\tau}(\overline{\boldsymbol{u}}) \; ; \qquad \nabla\cdot\overline{\boldsymbol{u}} = 0$$
 eddy-viscosity $\longrightarrow \boldsymbol{\tau} \; (\overline{\boldsymbol{u}}) = -2\nu_{t}S(\overline{\boldsymbol{u}})$

$$\boxed{\nu_t = (C_m \delta)^2 D_m(\overline{\boldsymbol{u}})}$$

 $D_m(\overline{u}) \longrightarrow \text{Smagorinsky (1963), WALE (1999), Vreman (2004),}$ QR-model (2011), σ -model (2011), S3PQR³ (2015), vortex-stretching-based model⁴ (2017)

 $C_m \longrightarrow Germano's dynamic model (1991), Lagrangian dynamic (1995),$ Global dynamic approach (2006)

³F.X.Trias, D.Folch, A.Gorobets, A.Oliva. *Building proper invariants for* eddy-viscosity subgrid-scale models, Physics of Fluids, 27: 065103, 2015.

⁴M.Silvis, R.Remmerswaal, R.Verstappen, **Physics of Fluids**, 29: 015105, 2017.

Subgrid characteristic length for LES: state of the art

In the context of LES, most popular (by far) is:

$$\begin{array}{|c|c|}\hline \delta_{\rm vol} = (\Delta x \Delta y \Delta z)^{1/3} & \longleftarrow \text{Deardorff (1970)}\\ \delta_{\rm Sco} = f(\textit{a}_1,\textit{a}_2)\delta_{\rm vol}, & \delta_{\textit{L}^2} = \sqrt{(\Delta x^2 + \Delta y^2 + \Delta z^2)/3} \end{array}$$

Subgrid characteristic length for LES: state of the art

In the context of LES, most popular (by far) is:

$$\begin{split} \delta_{\mathrm{vol}} &= (\Delta x \Delta y \Delta z)^{1/3} \\ &\iff \text{Deardorff (1970)} \\ \delta_{\mathrm{Sco}} &= f(a_1, a_2) \delta_{\mathrm{vol}}, \qquad \delta_{L^2} &= \sqrt{(\Delta x^2 + \Delta y^2 + \Delta z^2)/3} \\ \delta_{\mathrm{lsq}} &= \sqrt{\frac{\hat{\mathsf{G}}\hat{\mathsf{G}}^T : \mathsf{G}\mathsf{G}^T}{\mathsf{G}\mathsf{G}^T : \mathsf{G}\mathsf{G}^T}} &\iff \text{Trias et al. (2017)} \end{split}$$

Subgrid characteristic length for LES: state of the art

In the context of LES, most popular (by far) is:

• In the context of DES:

$$\delta_{\mathsf{max}} = \mathsf{max}(\Delta x, \Delta y, \Delta z)$$
 \longleftarrow Sparlart et al. (1997)

Flow-dependent definitions

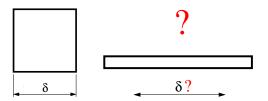
Research question #4:

• Can we establish a **simple**, **robust**, and **easily implementable** definition of δ for any type of grid that minimizes the impact of mesh anisotropies on the performance of subgrid-scale models?

Research question #4:

Background

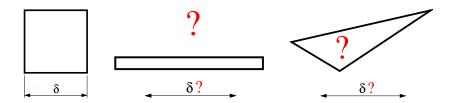
• Can we establish a **simple**, **robust**, and **easily implementable** definition of δ for any type of grid that minimizes the impact of mesh anisotropies on the performance of subgrid-scale models?



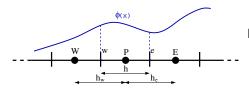
Research question #4:

Background

• Can we establish a **simple**, **robust**, and **easily implementable** definition of δ for any type of grid that minimizes the impact of mesh anisotropies on the performance of subgrid-scale models?



A rational length scale for LES

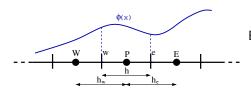


Box filter:
$$\overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

$$\partial_{\mathsf{x}}\overline{\phi} = \overline{\partial_{\mathsf{x}}\phi} = (\phi_{\mathsf{e}} - \phi_{\mathsf{w}})/h$$

Remark #1: the actual filter length, δ , when computing the face derivative is h_e , i.e., the distance between the adjacent nodes P and E.

A rational length scale for LES



Box filter: $\overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$

$$\partial_{\mathsf{x}}\overline{\phi} = \overline{\partial_{\mathsf{x}}\phi} = (\phi_{\mathsf{e}} - \phi_{\mathsf{w}})/h$$

The diffusive term in a FVM framework is approximated as follows

$$\left. \frac{\partial}{\partial x} \left(\Gamma \frac{\partial \phi}{\partial x} \right) \right|_{P} \approx \left. \frac{1}{h} \left(\Gamma \frac{\partial \phi}{\partial x} \right|_{e} - \left. \Gamma \frac{\partial \phi}{\partial x} \right|_{w} \right) = \left. \overline{\frac{\partial}{\partial x} \left(\Gamma \frac{\partial \phi}{\partial x} \right)} \right|_{P}$$

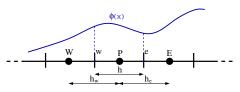


Box filter: $\overline{\phi}(x) = \frac{1}{h} \int_{-\infty}^{x+h/2} \phi dx$

$$\partial_{\mathsf{x}}\overline{\phi} = \overline{\partial_{\mathsf{x}}\phi} = (\phi_{\mathsf{e}} - \phi_{\mathsf{w}})/h$$

The diffusive term in a FVM framework is approximated as follows

$$\begin{split} \frac{\partial}{\partial x} \left(\Gamma \frac{\partial \phi}{\partial x} \right) \bigg|_{P} &\approx \frac{1}{h} \left(\Gamma \frac{\partial \phi}{\partial x} \bigg|_{e} - \Gamma \frac{\partial \phi}{\partial x} \bigg|_{w} \right) = \left. \frac{\overline{\partial}}{\partial x} \left(\Gamma \frac{\partial \phi}{\partial x} \right) \right|_{P} \\ &\approx \frac{1}{h} \left(\Gamma_{e} \frac{\phi_{E} - \phi_{P}}{h_{e}} - \Gamma_{w} \frac{\phi_{P} - \phi_{W}}{h_{w}} \right) = \left. \frac{\overline{\partial}}{\partial x} \left(\Gamma \frac{\overline{\partial} \phi}{\partial x} \right) \right|_{P} \end{split}$$

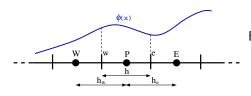


 $\overline{\phi}(x) = \frac{1}{h} \int_{-\pi/2}^{x+n/2} \phi dx$

$$\partial_{\mathsf{x}}\overline{\phi} = \overline{\partial_{\mathsf{x}}\phi} = (\phi_{\mathsf{e}} - \phi_{\mathsf{w}})/h$$

The diffusive term in a FVM framework is approximated as follows

$$\begin{split} \frac{\partial}{\partial x} \left(\Gamma \frac{\partial \phi}{\partial x} \right) \bigg|_{P} &\approx \frac{1}{h} \left(\Gamma \frac{\partial \phi}{\partial x} \bigg|_{e} - \Gamma \frac{\partial \phi}{\partial x} \bigg|_{w} \right) = \overline{\frac{\partial}{\partial x} \left(\Gamma \frac{\partial \phi}{\partial x} \right)} \bigg|_{P} \\ &\approx \frac{1}{h} \left(\Gamma_{e} \frac{\phi_{E} - \phi_{P}}{h_{e}} - \Gamma_{w} \frac{\phi_{P} - \phi_{W}}{h_{w}} \right) = \overline{\frac{\partial}{\partial x} \left(\Gamma \frac{\overline{\partial \phi}}{\partial x} \right)} \bigg|_{P} \\ &\approx \frac{1}{h} \left(\overline{\frac{\Gamma_{E} + \Gamma_{P}}{2} \frac{\phi_{E} - \phi_{P}}{h_{e}}} - \overline{\frac{\Gamma_{P} + \Gamma_{W}}{2} \frac{\phi_{P} - \phi_{W}}{h_{w}}} \right) = \overline{\frac{\partial}{\partial x} \left(\overline{\Gamma} \frac{\overline{\partial \phi}}{\partial x} \right)} \bigg|_{P} \end{split}$$



$$\overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

$$\partial_{\mathsf{x}}\overline{\phi} = \overline{\partial_{\mathsf{x}}\phi} = (\phi_{\mathsf{e}} - \phi_{\mathsf{w}})/h$$

A rational length scale for LES

000000000

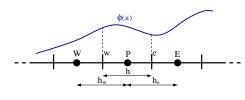
Remark #1: the actual filter length, δ , when computing the face derivative is h_e , i.e., the distance between the adjacent nodes P and E.

Remark #2: two filtering operations are performed when computing the diffusive term:

- the calculation of the face derivative
- the cell-to-face interpolation of Γ

$$\left. \frac{\partial}{\partial x} \left(\overline{\Gamma} \frac{\overline{\partial \phi}}{\overline{\partial x}} \right) \right|_{E}$$

A rational length scale for LES



Box filter:

$$\overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

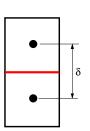
$$\partial_{\mathsf{x}}\overline{\phi}=\overline{\partial_{\mathsf{x}}\phi}=(\phi_{\mathsf{e}}-\phi_{\mathsf{w}})/h$$

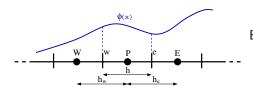
Remark #1: the actual filter length, δ , when computing the face derivative is h_e , i.e., the distance between the adjacent nodes P and E.

Remark #2: two filtering operations are performed when computing the diffusive term:

- the calculation of the face derivative
- the cell-to-face interpolation of Γ

Both filtering operators share the same filter length, δ : namely, the distance between the nodes adjacent to the corresponding face.





$$\overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

$$\partial_{\mathsf{x}}\overline{\phi} = \overline{\partial_{\mathsf{x}}\phi} = (\phi_{\mathsf{e}} - \phi_{\mathsf{w}})/h$$

A rational length scale for LES

0000000000

Remark #1: the actual filter length, δ , when computing the face derivative is h_e , i.e., the distance between the adjacent nodes P and E.

Remark #2: two filtering operations are performed when computing the diffusive term:

- the calculation of the face derivative
- the cell-to-face interpolation of Γ

Both filtering operators share the same filter length, δ ; namely, the distance between the nodes adjacent to the corresponding face.

A rational length scale for LES



Box filter:

$$\overline{\phi}(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} \phi dx$$

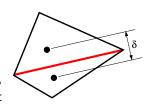
$$\partial_{\mathsf{x}}\overline{\phi}=\overline{\partial_{\mathsf{x}}\phi}=(\phi_{\mathsf{e}}-\phi_{\mathsf{w}})/h$$

Remark #1: the actual filter length, δ , when computing the face derivative is h_e , i.e., the distance between the adjacent nodes P and E.

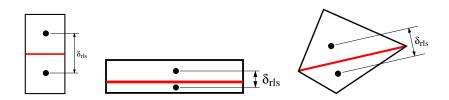
Remark #2: two filtering operations are performed when computing the diffusive term:

- the calculation of the face derivative
- the cell-to-face interpolation of Γ

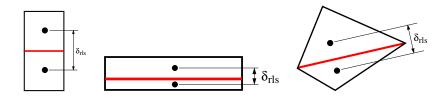
Both filtering operators share the same filter length, δ ; namely, the distance between the nodes adjacent to the corresponding face.



Properties of new definition, $\delta_{\rm rls}$

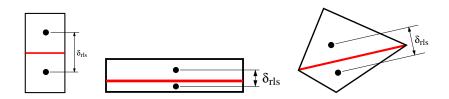


Properties of new definition, $\delta_{\rm rls}$



Locally defined

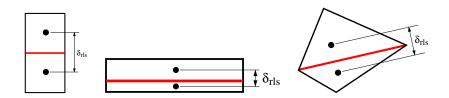
Properties of new definition, $\delta_{\rm rls}$



- Locally defined
- Well-bounded: $\Delta x \leqslant \delta_{\rm rls} \leqslant \Delta z$ (assuming $\Delta x \leqslant \Delta y \leqslant \Delta z$)

Properties of new definition, $\delta_{\rm rls}$

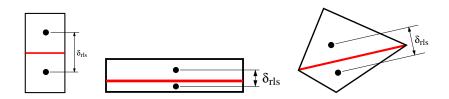
Background



- Locally defined
- Well-bounded: $\Delta x \leq \delta_{\rm rls} \leq \Delta z$ (assuming $\Delta x \leq \Delta y \leq \Delta z$)
- Sensitive to flow orientation, e.g. shear layers

Properties of new definition, $\delta_{\rm rls}$

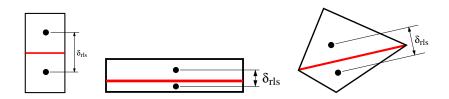
Background



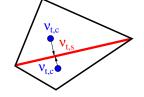
- Locally defined
- Well-bounded: $\Delta x \leq \delta_{\rm rls} \leq \Delta z$ (assuming $\Delta x \leq \Delta y \leq \Delta z$)
- Sensitive to flow orientation, e.g. shear layers
- Applicable to unstructured grids

Properties of new definition, $\delta_{\rm rls}$

Background

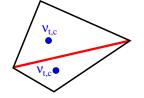


- Locally defined
- Well-bounded: $\Delta x \leq \delta_{\rm rls} \leq \Delta z$ (assuming $\Delta x \leq \Delta y \leq \Delta z$)
- Sensitive to flow orientation, e.g. shear layers
- Applicable to unstructured grids
- Easy and cheap



$$u_{t,c} \xrightarrow{\cdots} \hat{\nu}_{t,c} \xrightarrow{} \hat{\nu}_{t,s} \xrightarrow{\cdots} \nu_{t,s}$$

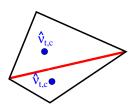
Implementation and an alternative definition



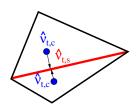
A rational length scale for LES

$$u_{t,c} \xrightarrow{} \hat{\nu}_{t,c} \xrightarrow{} \hat{\nu}_{t,s} \xrightarrow{} \nu_{t,s}$$

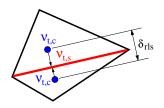
$${\color{red} \boldsymbol{\nu}_{t,c}} \stackrel{1/\delta_{vol}^2}{---} \hat{\boldsymbol{\nu}}_{t,c} \stackrel{1}{----} \hat{\boldsymbol{\nu}}_{t,s} \stackrel{1}{----} \boldsymbol{\nu}_{t,s}$$



$$oldsymbol{
u}_{t,c} \stackrel{1/\delta_{vol}^2}{----} \hat{oldsymbol{
u}}_{t,c} \stackrel{ ext{interpolation}}{\longrightarrow} \hat{oldsymbol{
u}}_{t,s} \stackrel{\dots}{\longrightarrow} oldsymbol{
u}_{t,s}$$



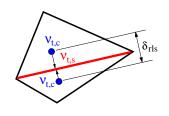
$$\boldsymbol{\nu}_{t,c} \xrightarrow{1/\delta_{vol}^2} \hat{\boldsymbol{\nu}}_{t,c} \xrightarrow{\text{interpolation}} \hat{\boldsymbol{\nu}}_{t,s} \xrightarrow{\delta_{rls}^2} \boldsymbol{\nu}_{t,s}$$



Background

Implementation and an alternative definition

$$\boldsymbol{\nu}_{t,c} \xrightarrow{1/\delta_{vol}^2} \hat{\boldsymbol{\nu}}_{t,c} \xrightarrow{\text{interpolation}} \hat{\boldsymbol{\nu}}_{t,s} \xrightarrow{\delta_{rls}^2} \boldsymbol{\nu}_{t,s}$$



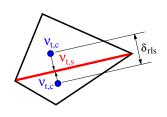
We can also compute an equivalent filter length, $\tilde{\delta}_{\mathrm{rls}}$, that leads to the same local dissipation

$$\tilde{\delta}_{\mathrm{rls}}^2 \hat{\nu}_t \mathsf{G} : \mathsf{G} = \hat{\nu}_t \hat{\mathsf{G}} : \hat{\mathsf{G}}$$

where $\hat{G} \equiv G\Delta$ and $\Delta \equiv \operatorname{diag}(\Delta x, \Delta y, \Delta x)$.

Implementation and an alternative definition

$${\color{red} \boldsymbol{\nu}_{t,c}} \xrightarrow{1/\delta_{vol}^2} \boldsymbol{\hat{\nu}}_{t,c} \xrightarrow{\text{interpolation}} \boldsymbol{\hat{\nu}}_{t,s} \xrightarrow{-\stackrel{\delta_{rls}^2}{-rls}} {\color{red} \boldsymbol{\nu}_{t,s}}$$



We can also compute an equivalent filter length, $\tilde{\delta}_{rls},$ that leads to the same local dissipation

$$\tilde{\delta}_{\mathrm{rls}}^2 \hat{\nu}_t \mathsf{G} : \mathsf{G} = \hat{\nu}_t \hat{\mathsf{G}} : \hat{\mathsf{G}} \implies$$

$$\boxed{ \tilde{\delta}_{\mathrm{rls}} = \sqrt{\frac{\hat{\mathsf{G}} : \hat{\mathsf{G}}}{\mathsf{G} : \mathsf{G}}} = \sqrt{\frac{\mathrm{tr}(\hat{\mathsf{G}}\hat{\mathsf{G}}^{\mathcal{T}})}{\mathrm{tr}(\mathsf{G}\mathsf{G}^{\mathcal{T}})}} }$$

where $\hat{G} \equiv G\Delta$ and $\Delta \equiv \operatorname{diag}(\Delta x, \Delta y, \Delta x)$.

Properties of new definition $\tilde{\delta}_{\rm rls}$

$$\Delta = \left(\begin{array}{cc} \Delta x & 0 \\ 0 & \Delta y \end{array}\right)$$

$$\mathsf{G} = \left(\begin{array}{cc} \partial_x u & \partial_y u \\ \partial_y u & \partial_y v \end{array} \right)$$

Properties of new definition $\tilde{\delta}_{\mathrm{rls}}$

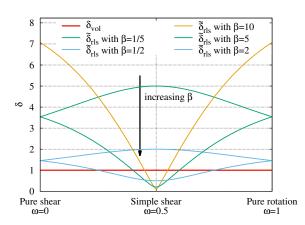
Background

$$\Delta = \begin{pmatrix} \Delta x & 0 \\ 0 & \Delta y \end{pmatrix} = \begin{pmatrix} \beta & 0 \\ 0 & \beta^{-1} \end{pmatrix} \qquad \mathsf{G} = \begin{pmatrix} \partial_x u & \partial_y u \\ \partial_y u & \partial_y v \end{pmatrix}$$

Properties of new definition $\tilde{\delta}_{rls}$

Background

$$\Delta = \left(\begin{array}{cc} \Delta x & 0 \\ 0 & \Delta y \end{array} \right) = \left(\begin{array}{cc} \beta & 0 \\ 0 & \beta^{-1} \end{array} \right) \qquad \mathsf{G} = \left(\begin{array}{cc} \partial_x u & \partial_y u \\ \partial_y u & \partial_y v \end{array} \right) = \left(\begin{array}{cc} 0 & 1 \\ 1 - 2\omega & 0 \end{array} \right)$$

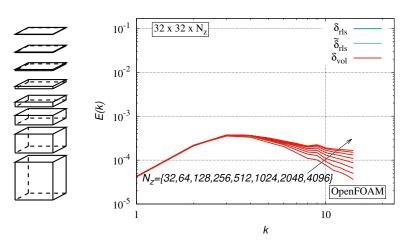


Isotropic turbulence on anisotropic grids

Comparison with classical Comte-Bellot & Corrsin (CBC) experiment

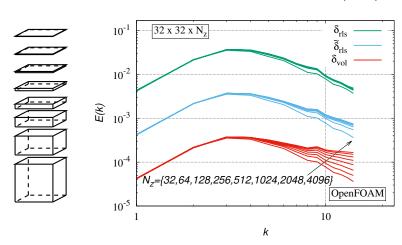
A rational length scale for LES

000000000



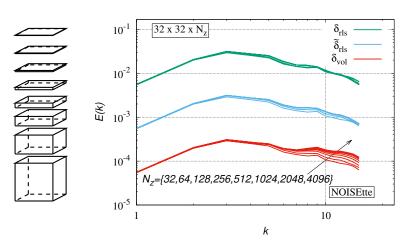
Isotropic turbulence on anisotropic grids

Comparison with classical Comte-Bellot & Corrsin (CBC) experiment



Isotropic turbulence on anisotropic grids

Comparison with classical Comte-Bellot & Corrsin (CBC) experiment

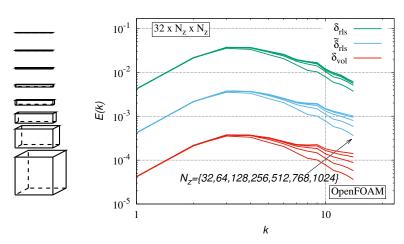


Isotropic turbulence on anisotropic grids

Comparison with classical Comte-Bellot & Corrsin (CBC) experiment

A rational length scale for LES

000000000



Contents

- Conclusions

 Preserving operator symmetries is the key point for reliable LES/DNS simulations



Background

- Preserving operator symmetries is the key point for reliable LES/DNS simulations
- Numerical schemes in FVM can be viewed as spatial (box) filters



$$\frac{\partial \varphi}{\partial t} + \frac{\partial (\mathbf{u}\varphi)}{\partial x} = \nu \frac{\partial^2 \varphi}{\partial x^2}$$

$$\frac{\partial \varphi}{\partial t} + \frac{\overline{\partial (\mathbf{u}\overline{\varphi})}}{\partial x} = \nu \frac{\overline{\partial^2 \overline{\varphi}}}{\partial x^2}$$

Background

- Preserving operator symmetries is the key point for **reliable LES/DNS** simulations
- Numerical schemes in FVM can be viewed as spatial (box) filters

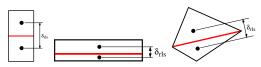
$$\frac{\partial \varphi}{\partial t} + \frac{\partial (\mathbf{u}\varphi)}{\partial x} = \nu \frac{\partial^2 \varphi}{\partial x^2} \quad \stackrel{\text{schemes}}{\longrightarrow} \quad \left| \frac{\partial \varphi}{\partial t} + \frac{\overline{\partial (\mathbf{u}\overline{\varphi})}}{\partial x} \right| = \nu \frac{\overline{\partial^2 \overline{\varphi}}}{\partial x^2}$$

$$\boxed{\frac{\partial \varphi}{\partial t} + \overline{\frac{\partial (\mathbf{u}\overline{\varphi})}{\partial x}} = \nu \overline{\frac{\partial^2 \overline{\varphi}}{\partial x^2}}}$$

 In principle, the analysis can be extended to 3D problems and unstructured grids

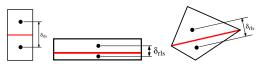
$$\overline{\nabla^2 \varphi = \overline{\nabla^2 \overline{\varphi}} + \overline{\nabla^2 \varphi'} + (\nabla^2 \overline{\varphi})' + \mathcal{O}(h^4)}$$

ullet A new definition for δ has been proposed



$$ilde{\delta}_{
m rls} = \sqrt{rac{\hat{\mathsf{G}}:\hat{\mathsf{G}}}{\mathsf{G}:\mathsf{G}}}$$

• A new definition for δ has been proposed

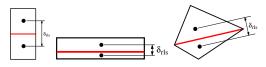


$$ilde{\delta}_{
m rls} = \sqrt{rac{\hat{\sf G}:\hat{\sf G}}{{\sf G}:{\sf G}}}$$

- It is locally defined, well-bounded, cheap and easy to implement
- Suitable for unstructured grids

Background

• A new definition for δ has been proposed

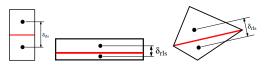


$$ilde{\delta}_{
m rls} = \sqrt{rac{\hat{\mathsf{G}}:\hat{\mathsf{G}}}{\mathsf{G}:\mathsf{G}}}$$

- It is locally defined, well-bounded, cheap and easy to implement
- Suitable for unstructured grids
- LES tests:
 - HIT
 - Turbulent channel flow (on-going)
 - Unstructured grids (future work)

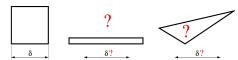
Background

ullet A new definition for δ has been proposed



$$ilde{\delta}_{
m rls} = \sqrt{rac{\hat{\mathsf{G}}:\hat{\mathsf{G}}}{\mathsf{G}:\mathsf{G}}}$$

- It is locally defined, well-bounded, cheap and easy to implement
- Suitable for unstructured grids
- LES tests:
 - HIT √
 - Turbulent channel flow (on-going)
 - Unstructured grids (future work)



Takeaway message:

ullet Definition of δ can have a big effect on simulation results