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About myself...
Professional...

Current position (since 2024): Full Professor at UPC
Previous positions: PostDoc at University of Groningen (2007-2009)
and UPC (2010-2013), Ramón y Cajal Senior Researcher at UPC
(2013-2018) and Associate Professor (2018-2023).
My research focus is on fluid mechanics, turbulence modeling,
physics and numerics of complex flows, applied mathematics and
numerical methods.
Some numbers: 58 papers, 190 conferences, 12 PhD’s+5 (on-going)
Stays and collaborations: Groningen (Netherlands), UCLA, KIAM
(Russian Academy of Sciences), Stanford, Tsinghua (China),
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More info: www.fxtrias.com
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About myself...
... and more personal stuff

My complete name: Francesc Xavier Trias Miquel
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My mother tongue is Catalan. I also speak Spanish at native level.
Hobbies? I like my work but also sports. Most practiced ones are
running and football:

Groningen (2009?) Barcelona (2019)
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The CTTC research group
Heat and Mass Transfer Technological Center (Catalan: Centre Tecnològic
de Transferència de Calor) has more than 30 years experience on CFD:

Fundamental research on numerical methods, fluid dynamics and
heat and mass transfer phenomena.
Applied research on thermal and fluid dynamic optimization of
thermal system and equipment.
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CTTC’s historical background in HPC
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DHC 
Ra=109

(3.2M)

DHC 
Ra=1011

(111M)

RB
Ra=1010 (607M)
Ra=1011 (5600M)

SqCyl  Re=22000 (324M)DUCT  Re_t=1200 (172M)

Impinging jet  
Re=20000 

(102M)
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General motivation: (very) large-scale DNS/LES

  

HPC (High Performance Computing)

DNS

MareNostrum 5-ACC
(Barcelona)

TSUBAME4.0
(Tokyo)

Snellius
(Amsterdam)

rank #8

1120 nodes with:

   2× Intel Shappire Rapids 8460

   1× NVIDIA Hopper 64 GB HBM

   1× Infiniband NDR200

rank #31

240 nodes with:
  2× AMD EPYC 9654 96-Core

  4× NVIDIA H100 SXM5

  1× Infiniband NDR200

rank #165

714 nodes with:

   2× AMD EPYC 9654 96C

   1× Infiniband NDR200

8 / 28



Background Motivation Revisiting FVM A rational length scale for LES Conclusions

General motivation: (very) large-scale DNS/LES

  

HPC (High Performance Computing)

Numerical Methods

How to properly discretize NS?

DNS
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Motivation

Research question #1:
What are we indeed solving with finite volume method?

DNS1 of the turbulent flow around a square cylinder at Re “ 22000

1F.X.Trias, A.Gorobets, A.Oliva. Turbulent flow around a square cylinder at Reynolds
number 22000: a DNS study, Computers&Fluids, 123:87-98, 2015.
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Motivation

Research question #1:
What are we indeed solving with finite volume method?

DNS2 of backward-facing step at Reτ “ 395 and expansion ratio 2

2A.Pont-V́ılchez, F.X.Trias, A.Gorobets, A.Oliva. DNS of Backward-Facing Step flow
at Reτ “ 395 and expansion ratio 2. Journal of Fluid Mechanics, 863:341-363, 2019.
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Motivation

Research question #2:
What are we interpolating? What is the correct interpretation?N. Valle et al. / Journal of Computational Physics 400 (2020) 108991 3

Fig. 1. Left: Domain � and its boundary ∂�. Right: Mesh M . ci corresponds with the ith cell, n̂i corresponds with the normal vector to the jth face (i.e., 
f j ) and vk corresponds with the kth vertex. Its incidence matrix is stated in equation (2).

Fig. 2. Distances rc± are defined as the shorter distances of the interface to the cell. These are then normal to the interface and correspond with the 
minimum radius of the tangent sphere.

properties such as edge lengths (WE), face surfaces (AF) and cell volumes (VC) are arranged as diagonal matrices. This 
matrix perspective presents several advantages: i) mesh independence, ii) computational simplicity and iii) readily accessible 
algebraic analysis. While we restrain ourselves from digging into the first two, the later is useful both for reviewing the 
classical symmetry-preserving scheme and the development of the novel technique described here. Hereafter, lowercase 
letters correspond with vectors, whose subscript indicates the geometric entity to which they are linked (e.g., pc corresponds 
to pressure located at cells). Capital letters correspond with matrices, whose subscript(s) identify rows and (if different) 
columns (e.g. TFC is the face-to-cell incidence matrix).

2.2. Interface

Interfaces imply a moving topology along the working domain, which implies a Lagrangian frame of reference. Interface 
tracking schemes track such a frame explicitly, at the expenses of numerical complexity [31]. On the other hand, interface 
capturing schemes preserve a fully Eulerian approach, by mapping quantities expressed in the Lagrangian frame back into 
the Eulerian one [7,32,33]. This results in a simpler implementation of the interface at the cost of an implicit representation. 
At this point we split the presentation between the techniques used to actually capture the evolution of the interface and 
the ones used to obtain explicit geometric information out of the implicit form.

2.2.1. Interface capturing
Let’s assume now that the domain � presents an interface at 	, which splits � into �+ and �− . We note that the 

volume of a single phase �+ can be defined as
∫

�+

dV =

∫

�

H(r)dV (3)

where r corresponds with the signed shorter distance from an arbitrary point to the interface, as can be seen in Fig. 2, 
while H(r) is its corresponding Heaviside step function, which is valued 1 at phase �+ and 0 otherwise. Note that this 
function is the key to map a Lagrangian frame (�+) back into an Eulerian one (�). Specific tracking of such a quantity 
is the basis of the Volume of Fluid (VOF) method [7], which yields to the concept of volume fraction or, more generally, 
marker function. Despite being formally neat, the implementation of specific convection schemes is required, eventually 
requiring full geometric reconstruction, resulting in an intricate implementation. A different approach is to capture the 
interface with a CLS [11,12]. This captures the interface as the isosurface of a continuous and smooth function θ . The level 
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Fig. 3. Example of a particular high-resolution scheme � for the advection of θc (in this example, the well-known upwind scheme) and the corresponding 
dedicated curvature interpolator, ϒ. In this case, the interpolation scheme for curvature is downwind.

−

(

dθc

dt

)T

MC = (UGθc)
T

MFϒ (42)

must hold at any time, while releasing a degree of freedom regarding the definition of the normal. We can now plug 

equation (38) in the time derivative and expand the transpose terms

−

(

dθc

dt

)T

MC = (C(uf)Cθc)
T

MC = θc
T
C(uf)

T

C
MC = θc

T
G

T
U

T
MFϒ ∀θc (43)

which should hold for any θc . This leads to

C(uf)
T

C
MC = G

T
U

T
MFϒ (44)

where, exploiting the diagonal arrangement of both U and MF to cast G
T
U

T
MF into G

T
MFU, we can use equation (20) to 

obtain the final condition as

− (MCC(uf)C)T = MCDUϒ (45)

From where we can infer that the convective scheme of the marker function determines the curvature shift operator. This 

identity guarantees that energy transfers are balanced and thus total mechanical energy, Em , is preserved up to temporal 

integration, in the same way that kinetic energy, Ek , is preserved in the symmetry-preserving discretization presented in 

Section 3.2 for the single-phase case.

Regarding the construction of C(uf)C , any high-resolution scheme can be embedded into the algebraic form C(uf)C =

DU�, where � ∈ R|F |×|C | is the actual high-resolution cell-to-face interpolator. For the CLS, this typically corresponds with 

SUPERBEE [11]. We can split � as � = � + � [42], to produce

C(uf)C = DU (� + �) (46)

This represents the symmetric (DU�) and skew-symmetric (DU�) components of C(uf)C . The extension to VOF schemes, 

nicely summarized by Patel et al. [43], requires a previous casting of the advection scheme into the same framework intro-

duced in [42]. Plugging equation (46) into equation (45) results in the final form of the dedicated cell-to-face interpolation 

for curvature

ϒ = � − � (47)

which guarantees a proper potential and kinetic energy transfer. An illustrative example can be seen in Fig. 3. In short, any 

upwind-like component used for the advection of θc turns into a downwind-like component for the interpolation of kf . This 

can be compared with the second-order midpoint rule used by Olsson and Kreiss where ϒ = � [11].

4.3. Analysis

By mimicking equations (30) and (32) we obtain the discrete counterpart of kinetic energy as

dEk

dt
= γ (UGθc,ϒkc)F + μ (uf,LFuf)F (48)

which assumes a proper discretization of all other terms described in Section 3. We proceed similarly for potential energy 

by mimicking equation (34) to define discrete potential energy as

10 / 28
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Motivation

Research question #3:
Can we developed high-order symmetry-preserving schemes for
unstructured grids? And, therefore, get better performance

Multilevel domain decomposition

Multilevel workload distribution consists of dividing the computational domain (mesh) into subsets recursively
to distribute it among the hardware of a computing system.

• First-level among computing nodes.
• Second-level among computing units.
• Third-level among threads in NUMA shared-memory spaces.
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Every thread is assigned a fixed chunk of data. Thread affinity, malloc, and first touch policy grant memory locality.
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Reminder: symmetry-preserving discretization

Continuous

Discrete

Bu
Bt ` C pu, uq “ ν∇2u ´ ∇p

∇¨u “ 0

Ωduh
dt ` C puhq uh “ Duh ´ Ghph

Muh “ 0h

pa, bq “

ż

Ω
abdΩ

pC pu, ϕ1q, ϕ2q “ ´pC pu, ϕ2q, ϕ1q

p∇¨a, ϕq “ ´pa, ∇ϕq

p∇2a, bq “ pa, ∇2bq

pah, bhqh “ aT
h Ωbh

C puhq “ ´CT puhq

ΩGh “ ´MT

D “ DT def ´
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Revisiting FVM
φ(x)

eh

W EPw e

wh

h

Box filter: φ ”ϕpxq “
1
h

ż x`h{2

x´h{2
ϕdx

Bxϕ|e “ Bxϕ|e “ pϕE ´ ϕPq{he

Bϕ

Bt `
Bpuϕq

Bx “ ν
B2ϕ

Bx2

ÝÑ
Bϕ

Bt `
Bpuϕq

Bx “ ν
B2ϕ

Bx2 Exact FVM eq!

hBϕP
Bt ` puϕqe ´ puϕqw “ ν

ˆ

Bϕ

Bx

ˇ

ˇ

ˇ

ˇ

e
´

Bϕ

Bx

ˇ

ˇ

ˇ

ˇ

w

˙

hBϕP
Bt `

ue
ϕP ` ϕE

2 ´ uw
ϕW ` ϕP

2

“

ν

ˆ

ϕE ´ ϕP
he

´
ϕP ´ ϕW

hw

˙

Bϕ

Bt `

Bpurϕq

Bx

“

ν
B2ϕ

Bx2

where rϕe “
ϕP ` ϕE

2 “ ϕe ` Oph2q
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Towards high-order via deconvolution
φ(x)

eh

W EPw e
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Box filter: φ ” ϕpxq “
1
h

ż x`h{2

x´h{2
ϕdx

Bxϕ|e “ Bxϕ|e “ pϕE ´ ϕPq{he

Hence, the standard 2nd -order symmetry-preserving FVM can be viewed as

B2φ

Bx2 «
B2φ

Bx2 ` Oph2q where B2φ

Bx2 “
φE ´ 2φP ` φW

h2

Recalling that ϕ “ ϕ ` ϕ1 and ϕ1
P « ´ 1

24pφE ´ 2φP ` φW q ` Oph2q

B2φ

Bx2 “
B2φ

Bx2 `
B2φ1

Bx2 `

ˆ

B2φ

Bx2

˙1

`

B2φ

Bx2 «
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Subgrid characteristic length for LES: state of the art

Btu ` pu ¨ ∇qu “ ∇2u ´ ∇p ´ ∇ ¨ τpuq ; ∇ ¨ u “ 0
eddy-viscosity ÝÑ τ puq “ ´2νtSpuq

νt “ pCmδq2Dmpuq

Dmpuq ÝÑ Smagorinsky (1963), WALE (1999), Vreman (2004),
QR-model (2011), σ-model (2011), S3PQR3 (2015),
vortex-stretching-based model4 (2017)

Cm ÝÑ Germano’s dynamic model (1991), Lagrangian dynamic (1995),
Global dynamic approach (2006)

δ?

3F.X.Trias, D.Folch, A.Gorobets, A.Oliva. Building proper invariants for
eddy-viscosity subgrid-scale models, Physics of Fluids, 27: 065103, 2015.

4M.Silvis, R.Remmerswaal, R.Verstappen, Physics of Fluids, 29: 015105, 2017. 17 / 28
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Subgrid characteristic length for LES: state of the art
In the context of LES, most popular (by far) is:

δvol “ p∆x∆y∆zq1{3 ðù Deardorff (1970)

δSco “ f pa1, a2qδvol, δL2 “

b

p∆x2 ` ∆y2 ` ∆z2q{3

δlsq “

d

ĜĜT : GGT

GGT : GGT ðù Trias et al. (2017)

In the context of DES:
δmax “ maxp∆x , ∆y , ∆zq ðù Sparlart et al. p1997q

Flow-dependant definitions

δω “

b

pω2
x ∆y∆z ` ω2

y ∆x∆z ` ω2
z ∆x∆yq{|ω|2ðù Chauvet et al. p2007q

δ̃ω “
1

?
3

max
n,m“1,...,8

|ln ´ lm| ðù Mockett et al. p2015q

δSLA “ δ̃ωFKHpVTMq ðù Shur et al. p2015q
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A rational length scale for LES

Research question #4:
Can we establish a simple, robust, and easily implementable
definition of δ for any type of grid that minimizes the impact of mesh
anisotropies on the performance of subgrid-scale models?

δ

δ?

?

δ?

?
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A rational length scale for LES
φ(x)

eh

W EPw e

wh

h

Box filter: ϕpxq “
1
h

ż x`h{2

x´h{2
ϕdx

Bxϕ “ Bxϕ “ pϕe ´ ϕw q{h

Remark #1: the actual filter length, δ, when computing the face
derivative is he , i.e., the distance between the adjacent nodes P and E .
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A rational length scale for LES
φ(x)

eh

W EPw e

wh

h

Box filter: ϕpxq “
1
h

ż x`h{2

x´h{2
ϕdx

Bxϕ “ Bxϕ “ pϕe ´ ϕw q{h

The diffusive term in a FVM framework is approximated as follows

B

Bx

ˆ

ΓBϕ

Bx

˙ˇ

ˇ

ˇ

ˇ

P
«

1
h

ˆ

ΓBϕ

Bx

ˇ

ˇ

ˇ

ˇ

e
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Remark #1: the actual filter length, δ, when computing the face
derivative is he , i.e., the distance between the adjacent nodes P and E .
Remark #2: two filtering operations are performed
when computing the diffusive term:

the calculation of the face derivative
the cell-to-face interpolation of Γ
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A rational length scale
Properties of new definition, δrls

δrls

δrls

δrls

Locally defined
Well-bounded: ∆x ď δrls ď ∆z (assuming ∆x ď ∆y ď ∆z)
Sensitive to flow orientation, e.g. shear layers
Applicable to unstructured grids
Easy and cheap
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A rational length scale
Implementation and an alternative definition

νt,c νt,s

νt,c ν̂t,c ν̂t,s νt,s

interpolation

t,cν

t,cν

νt,s

δ rls

We can also compute an equivalent filter length, δ̃rls, that leads to the
same local dissipation

δ̃2
rlsν̂tG : G “ ν̂tĜ : Ĝ

ùñ δ̃rls “

d

Ĝ : Ĝ
G : G “

d

trpĜĜT q

trpGGT q

where Ĝ ” G∆ and ∆ ” diagp∆x , ∆y , ∆xq.
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Ĝ : Ĝ
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A rational length scale
Properties of new definition δ̃rls
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A rational length scale
Isotropic turbulence on anisotropic grids

Comparison with classical Comte-Bellot & Corrsin (CBC) experiment
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Concluding remarks

Preserving operator symmetries is the key point
for reliable LES/DNS simulations

Numerical schemes in FVM can be viewed as
spatial (box) filters

Bφ

Bt `
Bpuφq

Bx “ ν
B2φ

Bx2
schemes

ÝÑ
Bφ

Bt `
Bpuφq

Bx “ ν
B2φ

Bx2

In principle, the analysis can be extended to 3D
problems and unstructured grids

∇2φ “ ∇2φ ` ∇2φ1 ` p∇2φq1 ` Oph4q
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Concluding remarks
A new definition for δ has been proposed

δrls

δrls

δrls

δ̃rls “

d

Ĝ : Ĝ
G : G

It is locally defined, well-bounded, cheap and easy to implement
Suitable for unstructured grids
LES tests:

HIT ✓
Turbulent channel flow (on-going)
Unstructured grids (future work)

Takeaway message:
Definition of δ can have a big effect on simulation results
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Thank you for your attendance
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