
Parallel CFD 2003
May 13-15, 2003 Moscow, RUSSIA

Direct Numerical Simulation of Natural
Convection Flows Using PC Clusters

M.Soria, F.X.Trias, A.Oliva, C.D. Pérez-Segarra

Centre Tecnològic de Transferència de Calor (CTTC)
Lab. de Termotècnia i Energètica, Universitat Politècnica de Catalunya (UPC)

ETSEIT, c/ Colom 11, 08222 Terrassa, Spain
e-mail: manel@labtie.mmt.upc.es, web page: http://www.upc.es/lte

1 / 55

Presentation outline

1-Introduction

• Context

• Governing equations

• Pressure-velocity coupling. Poisson equation. Difficulties of incompressible flows

• Loosely-coupled parallel computers

• Alternatives to solve the Poisson equation

2-DSFD method to solve efficiently Poisson equations on PC clusters

• Fourier diagonalization

• Direct Schur Decomposition

• Benchmarks

3-Application example: DNS of turbulent natural convection in a cavity

• Problem definition

• Verification of the code and simulations

• Instantaneous flows

• First-order statistics of the flow

• Kinetic energy balances and spectroconsistent discretization

• Second-order statistics of the flow

• Comparision of 2D and 3D profiles

4-Conclusions

2 / 55

Introduction - Context

Navier-Stokes equations

Turbulent, Incompressible flows

Time-accurate integration

Using primitive variables (i.e., p-u)

Pressure-velocity coupling solved with segregated approaches

Structured and staggered meshes

Finite-control volume formulation

DNS and LES applications

Symmetry-preserving (spectroconsistent) discretization

The main problem from a parallel computing point of view is to solve the incompressibility
restriction, expressed in terms of a Poisson equation

3 / 55

Introduction - Governing equations

Direct numerical simulation of turbulent natural convection flows.

Navier-Stokes coupled with energy transport equation.

∇ · u = 0

∂u
∂t

= −u · ∇u + ν∇2u−
1

ρ
∇p + f

∂T

∂t
= −u · ∇T + α∇2

T

Where fz = gβT

Assuming that the fluid is incompressible, Newtonian, of constant physical properties, using Boussinesq approximation to account for the density

variations and neglecting thermal radiation.

4 / 55

Pressure velocity coupling (1/3)

Momentum equation is expressed as:

∂u
∂t

= R (u)−
1

ρ
∇p

Where R = −u · ∇u + +ν∇2u + f

Spatial discretization: Second order spectro-consistent discretization (fourth-order scheme is being

implemented)

Time discretization:

• Central difference is used for the time derivative term

• Fully explicit second order Adams-Bashforth scheme for R
• Implicit first-order Euler scheme for pressure-gradient term and mass-conservation equation

5 / 55

Pressure velocity coupling (2/3)

Time-discrete system to be solved:

un+1 − un

∆t
=

3

2
Rn −

1

2
Rn−1 −

1

ρ
∇p

n+1

∇ · un+1
= 0

Predictor velocity is defined as up = un + ∆t
[

3
2R

n − 1
2R

n−1
]

up is calculated with data available from previous time steps

Then, the unkown velocity is un+1 = up −∇p̃

To evaluate p̃ = ∆t
ρ pn+1, mass conservation equation is imposed:

∇ · un+1
= ∇ · up −∇ · (∇p̃) = 0

This leads to a Poisson equation ∇2p̃ = ∇ · up that must be solved to evaluate p̃ and then up

This approach is similar in all the segregated formulations for incompressible flows
6 / 55

Pressure velocity coupling (3/3)

Why is Poisson equation so difficult ? A physical argument

Sound velocity is c =

√(
∂p
∂ρ

)
s

Incompressibility→ ∂ρ
∂p = 0→ c =∞→ local changes affect instantaneously all the domain

This behaviour is inhereited by the Poisson equation, without time derivatives

∇2p̃ = ∇ · up

It has to be solved implicitly even if the rest of the formulation is explicit

At least one large linear equation system, coupling distant nodes, has to be solved per time

step/iteration:

Ax = b

However, under certain conditions matrix A remains constant during all the problem

Our problem is actually to solve: Axi = bi i = 1 · · ·M where M ≈ 105···7
7 / 55

Loosely coupled parallel computers

Low cost PC clusters are loosely coupled parallel computers:

Good floating point power per-processor (excellent ratio CPU power / cost)

Comparatively slow network (low bandwidth - high latency)

Parallel algorithms must be tolerant to slow networks to run efficiently on a PC cluster

For PCFD, unlikely other applications, latency is often the most critical problem
8 / 55

Matrix-vector product on a cluster and a Cray T3E

Cray T3E (300 MHz) versus 900 MHz K7 (100 Mbit/s fast ethernet)

N
P

: number of nodes assigned to each processor.

9 / 55

Alternatives to solve the Poisson equation

The main challenge on a loosely-coupled system is the efficient solution of the Poisson
equation

MG algorithms

• Very efficient on sequential systems

• Need very low latency parallel computers; on high latency systems they must be combined with

direct parallel solvers

Krylov subspace algorithms

• Parallelize well

• Depend on good preconditioners to be efficient

• Preconditioners tend to degradate with P

Fast-Poisson solvers and FFT-based methods are restricted to determinated classes of problems

Schur Complement methods

• Iterative

• Direct - Use the fact that matrix A is constant

10 / 55

DSFD - Overview (1/2)

DSFD is a combination of a FFT-based method and a Direct Schur method:

• Fourier diagonalization is applied to reduce the heptadiagonal equation to a family of
independent pentadiagonal equations (this imposes certain restrictions)

• The pentadiagonal equations are solved with a Direct Schur decompositiont method

It is an algebraic approach: only the discrete equation system is used

Direct method, based on a preprocessing stage where only matrix A is used

After pre-processing, DSFD allows the solution of heptadiagonal equations using parallel computers

with just one message

DSFD is an interesting option to consider if:

• A loosely coupled parallel computer is to be used

• The matrix A has to be used many times with different right-hand-sides

• The problem to be solved is periodic in one direction

E.g., for LES/DNS with Beowulf clusters

11 / 55

DSFD - Overview (1/2)

yx

z

periodic

The mesh must be uniform in x

direction (usually periodic).

Domain is decomposed only in di-

rections y, z to avoid doing parallel

FFT, that is very inefficient (in our

context) on loosely coupled comput-

ers

12 / 55

Fourier Diagonalization (1/5)

Heptadiagonal system to be solved: A3dx3d = b3d

a
p
i,j,k x

p
i,j,k + Σnba

nb
i,j,k x

nb
i,j,k = bi,j,k

To express it with block matrices, vectors x3d and b3d are divided into NyNz subvectors with Nx

components each:

x
3d

=
[
x1,1, x2,1, · · · xj,k, · · · , xNy,Nz

]t

where:

xj,k = [x1,j,k, x2,j,k, · · · , xNx,j,k]
t

13 / 55

Fourier Diagonalization (2/5)



A
p
1,1 An

1,1 · · · At
1,1

As
2,1 A

p
2,2 An

2,1 · · · At
2,1

. . .

Ab
j,k · · · As

j,k A
p
j,k

An
j,k · · · At

j,k
. . .

Ab
Ny,Nz

· · · As
Ny,Nz

A
p
Ny,Nz





x1,1
x2,1

...
xj,k

...
xNy,Nz


=



b1,1
b2,1

...
bj,k

...
bNy,Nz



A
b
j,k xj,k−1 + A

s
j,k xj−1,k + A

p
j,k xj,k + A

n
j,k xj+1,k + A

t
j,k xj,k+1 = bj,k

An
j,k, As

j,k, At
j,k and Ab

j,k are Nx ×Nx diagonal matrices

Ap
j,k are Nx ×Nx circulant tridiagonal matrices:

A
p
j,k =


β α α

α β α
. . .

α α β


where α = aw

j,k = ae
j,k and β = ap

j,k

14 / 55

Fourier Diagonalization (3/5)

All the circulant matrices of order Nx have the same base of eigenvectors

Let Q be the matrix whose columns are the eigenvectors of all the Ap
j,k

The product x = Qx inverse Fourier transform:

xi =
1

2
x1 +

Nx
2 −1∑
ν=1

(
x2ν cos

(
νi

2π

Nx

)
+ x2ν+1 sin

(
νi

2π

Nx

))
+

1

2
xNx (−1)

i
i = 1 · · ·Nx

and the product x = Q−1x is a direct Fourier transform:

x1 =
2

Nx

Nx∑
i=1

xi

x2ν =
2

Nx

Nx∑
i=1

xi cos

(
νi

2π

Nx

)
ν = 1 · · ·

Nx

2
− 1

x2ν+1 =
2

Nx

Nx∑
i=1

xi sin

(
νi

2π

Nx

)
ν = 1 · · ·

Nx

2
− 1

xNx =

Nx∑
i=1

xi (−1)
i

15 / 55

Fourier Diagonalization (4/5)

All the matrices Ap
j,k have tridiagonal form in the same base:

Q
−1

A
p
j,kQ = λj,k

Where λj,k is a diagonal matrix whose elements are:

λ1 = β + 2α

λ2ν = λ2ν+1 = −4α sin
2

(
νπ

Nx

)
+ β + 2α ν = 1 · · ·

Nx

2
− 1

λNx = β − 2α

Thus, expressing xj,k as Qxj,k and premultiplying by Q−1, the block equation becomes:

A
b
j,k xj,k−1 + A

s
j,k xj−1,k + λj,k xj,k + A

n
j,k xj+1,k + A

t
j,k xj,k+1 = bj,k

As the non-diagonal entries of matrices Ap
j,k have been eliminated, unknown xi,j,k is only coupled

with unknowns in the same plane i
16 / 55

Fourier Diagonalization (5/5)

Selecting of the i component of each of the NyNz block equations, we obtain a penta-diagonal
scalar equation system in x

a
b
j,k xi,j,k−1 + a

s
j,k xi,j−1,k + a

p
i,j,k xi,j,k + a

n
j,k xi,j+1,k + a

t
j,k xi,j,k+1 = bi,j,k

The operations to be performed to solve the heptadiagonal equation system are:

1. Direct FFT. Calculate the NyNz transformed right-hand-side sub-vectors, bj,k = Q−1b

2. Solve the Nx decoupled pentadiagonal equation systems Aixi = bi.

3. Inverse FFT. Carry out the antitransformation of the NyNz solution sub-vectors xj,k = Q−1xj,k

FFT are very cheap if done sequentially, but in our conditions they can not be carried out efficiently

with loosely coupled parallel computers (to the knowledge of the authors)

This is why the domain is only decomposed in directions y, z

Solution of the pentadiagonal systems is done with a Direct Schur Decomposition using just one

message for all the pentadiagonal equation systems
17 / 55

Direct Schur Decomposition - Main ideas (1/7)

Based on non-overlapping subdomains with implicit treatment of the interface

19 20 53 25 26 54 33 34 35

17

15

1

40

p=0

p=3

p=1

p=4

p=2

p=5

3 4

2 36

38 7

5 6

8 39

37

4544434241

16 49 21 22 50 27 28 29

484746

31 32305224235118

12 13 14

11109

Interface nodes

Interface nodes needed by p=1

Only one all-to-all communication episode is needed

18 / 55

Direct Schur Decomposition - Overview (2/7)

No property of A (i.e., symmetry or positive-definiteness) or the underlying mesh is requiered

Each processor has to solve twice its own subdomain and cooperate to solve an interface equation to

obtain the exact solution of the problem

After a pre-processing step only one all-to-all communication episode is needed.

It can be applied to 2D and 3D problems. Its main limitation for 3D problems is the memory. This

is why the Fourier decomposition is carried out first

Compared with matrix inversion:

DSD(A) needs far less storage memory than A−1

Its faster to preprocess DSD(A) than A−1

When DSD(A) is available, it is faster to solve than the matrix-vector product A−1b

Direct Schur decomposition is more appropiated to parallel computers

19 / 55

Direct Schur Decomposition (3/7)

Each of the pentadiagonal systems is denoted by: Ax = b

Decomposition (a subvector is assigned to each processor): x = [x0, x1, · · · , xP−1, xs]
t

After reordering, and using block matrices, the system is:
A0,0 0 · · · 0 A0,s

0 A1,1 · · · 0 A1,s
... ...

0 0 · · · AP−1,P−1 AP−1,s

As,0 As,1 · · · As,P−1 As,s




x0

x1
...

xP−1

xs

 =


b0

b1
...

bP−1

bs


Assuming non-singular local matrices, Block Gaussian elimination allows to express it as:

A0,0 0 · · · 0 A0,s

0 A1,1 · · · 0 A1,s
... ...

0 0 · · · AP−1,P−1 AP−1,s

0 0 · · · 0 Ãs,s




x0

x1
...

xP−1

xs

 =


b0

b1
...

bP−1

b̃s


20 / 55

Direct Schur Decomposition (4/7)

The interface equation Ãs,sxs = b̃s allows to solve the interface nodes before the rest !

Ãs,s = As,s −
∑P−1

p=0 As,pA
−1
p,pAp,s

b̃s = bs −
∑P−1

p=0 As,pA
−1
p,pbp

After solving the interface equation, each local subproblem can be easily solved by a processor without

additional communications:

Ap,pxp = bp − Ap,sxs

21 / 55

Direct Schur Decomposition (5/7)

Evaluation of interface equation Ãs,sxs = b̃s

Ãs,s = As,s −
∑P−1

p=0 As,pA
−1
p,pAp,s b̃s = bs −

∑P−1
p=0 As,pA

−1
p,pbp

To avoid evaluation of A−1
p,p :

1. Evaluation of interface matrix Ãs,s = As,s −
∑P−1

p=0 Ãp
s,s

Contribution from processor p: Ãp
s,s = As,pA

−1
p,pAp,s

Column c of Ãp
s,s is evaluated as:

a) Solve t from Ap,pt = [Ap,s]c
b)

[
Ãp

s,s

]
c
← As,pt

2. Evaluation of right-hand-side vector b̃s = bs −
∑P−1

p=0 b̃p
s

Contribution from processor p: b̃p
s = As,pA

−1
p,pbp

a) Solve t from Ap,pt = bp

b) b̃p
s ← As,pt

22 / 55

Direct Schur Decomposition (6/7)

The algorithm has two parts:

1. Preprocessing stage

Used only once

As Ãs,s only depends on A (and not b), it is evaluated and inverted for each plane

2. Solution stage

Called for each b to be solved (105···7 times!)

a) b̃s is evaluated. Each processor has to solve a local equation system to do so. Here, one
all-to-all message is needed. The information for all the pentadiagonal equations is packed in

the same all-to-all message

b) Each processor performs the part of the matrix vector product
[
Ãs,s

]−1

bs needed to evaluate

the nodes of xs adjacent to its own subdomain

c) Each processor solves a local equation to determinate its subvector xp

23 / 55

Direct Schur Decomposition (7/7)

The algorithm is not conceptually complex but its efficiency depends on certain details:

In order to evaluate
[
Ãs,s

]−1

bs, a parallel block-LU algorithm is used to improve the efficiency

on loosely coupled systems

After the block-LU decomposition, the inverse is calculated row by row. The block LU of Ãt
s,s

is evaluated and then inverse and transpose operators are permuted

Distributed storage of
[
Ãs,s

]−1

. Each processor only stores the rows of the inverse needed to

perform its part of
[
Ãs,s

]−1

bs.

The local equation systems are solved using a band-LU algorithm

Different matrix data structures are needed:

• Matrices As,p, Ap,s, As,s are treated as sparse
• Matrices Ap,p are banded
• Matrix Ãs,s is treated as a block matrix and distributed by rows at the different processors

• Matrix
[
Ãs,s

]−1

is treated as dense and stored by rows at the different processors

24 / 55

Benchmark (1/4) - Speedup of DSD on a PC cluster
900 MHz K7 processors; Switched 100 Mbits/s network

0

5

10

15

20

25

30

35

1 4 6 8 9 10 12 15 16 20 24

S
pe

ed
-u

p

�

P

N=20000
N=45000
N=80000

N=125000
N=180000

S=P

The cost of DSFD is roughly Nx times the cost of one pentadiagonal equation Irregular behaviour for a fixed N is due to different bandwiths of

local problems depending on P .

Super-linear S is due to the non-linear cost of local band-LU solver and low cost of interface solution and communications.
25 / 55

Benchmark (2/4) - DSD solution time on a PC cluster
900 MHz K7 processors; Switched 100 Mbits/s network

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

C
om

pu
tin

g
tim

e
(s

)

N

P=1
P=8

P=24

For N = 125× 103, P = 24 Direct Shur Complement is ≈ 30 times faster than sequential ACM multigrid with ε∗ = 10−3
26 / 55

Benchmark (3/4) - DSFD solution time on a PC cluster
900 MHz K7 processors; Switched 100 Mbits/s network

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50

C
om

pu
tin

g
tim

e
(s

)

P

16x60x120
8x120x240

16x160x320
32x160x320

4x180x360
8x180x360

16x240x480
64x156x312

For N = 3,1× 106, each equation can be solved almost to machine accuracy in about three seconds
27 / 55

Benchmark (4/4) - Decomposition of total time with 36 processors

total

total

NS

NS

0% 20% 40% 60% 80% 100%

statistic
analysis

update halos momentum-
energymass

DSFD

global summation

CPU network, load unbalance

band-LU, matrix-vectorDSFD FFT

mass

28 / 55

Natural Convection Flows in Cavities

The first aplication of the new DNS code based on DSFD and spectro-consistent discretizations has

been a natural convection problem

The majority of the natural convection problems in closed cavities can be classified in three groups:

Cavities where the flow is due to internal heat generation

Cavities heated from below (Rayleigh-Bénard configuration)

Differentially heated cavities (DHC)

• Laminar flows: 2D - 3D

• Turbulent flows:

◦ RANS models

◦ LES models

◦ DNS: in all previous DNS studies a 2D behavior has been assumed

Our goal: clarify the effects of the assumption of 2D over the statistics of a turbulent DHC flow

29 / 55

Differentially Heated Cavity (DHC) Problem (1/2)
General schema

yx

z

HOT

COLD

PERIODIC

PERIODIC

ADIABATIC

ADIABATIC

g

Boundary conditions:

Isothermal vertical walls

Adiabatic horizontal walls

Periodic boundary conditions in the x di-

rection, orthogonal to the main flow

Dimensionless governing numbers:

Raz =
β∆TL3

zg
αν

Pr = ν
α

Height aspect ratio Az = Lz
Ly

Depth aspect ratio Ax = Lx
Ly

30 / 55

Differentially Heated Cavity (DHC) Problem (2/2)
Definition of our problem

Dimensionless governing number values:

Raz = 6,4× 108

Pr = 0,71

Az = 4

Ax = 1

Basic motivations:

This case is an extension to 3D of one of the 2D problems studied in detail in the literature

Periodic boundary conditions allow to study the 3D effects due to instability of the main flow

and not to the boundary conditions

This variant is computationally more convenient since the resulting flow has no boundary layers

in the x direction:

• The mesh can be coarser and uniform in x direction

• As the mesh is uniform Fourier-based methods, such as DSFD can be used
31 / 55

Code and Simulation Verifications

Two basic verifications are necessary in order to ensure the numerical results are reasonably close to

the analytic solution

1. Verification of the code

Show that the code solves the governing equations with the expected order of accuracy

A method (MMS) based on the systematic discretization convergence tests using analytic

solutions has been used

2. Verification of the simulation

In order to select the mesh size, integration period, depth lenhgth, etc, a compromise between
accuracy and time computing must be made
It is important to evaluate if the numerical results obtained are reasonably close to the
asymptotic solution
In our case, as the flow is chaotic, we are actually checking if the statistics of the flow are

close to the asymptotic solution

32 / 55

Code verification using the MMS method (1/4)

Assume that the functions for the integration of mass and momentum equations are to be verified

MMS is carried out in three basic steps:

1. Generation of the analytic velocity and source terms fields:

An arbitrary analytic non-trivial function ua (x, t) which accomplishes selected boundary condi-

tions and incompressibility constraint (∇ · ua = 0) is chosen

The source term fa (x, t) that would match with the arbitrary solution assuming that pressure

gradient is null, is calculated analytically as:

fa =
∂ua

∂t
+ ua · ∇ua − Pr∇2ua

2. Obtention of the numerical solution:

The analytic source term fa (x, t) is evaluated at the discretization nodes and then used as

input data for the numerical code.

33 / 55

Code verification using the MMS method (2/4)

3. Evaluation of the numerical errors and order of accuracy schemes verification:

The discrete numerical solution un (x, t) is compared with ua (x, t) :

‖e‖∞ = ‖ua − un‖∞ = Max | ua (xi, yj, zk, tn)− un (xi, yj, zk, tn) |

This measure is repeated for systematically refined grids.

As ‖e‖∞ must tend to zero with an expected order of accuracy

‖e‖∞ = Ct∆t
pt + Ch∆h

ph + H.O.T

numerical results of pt and ph can be evaluated separately and compared with the theoretical values

For the case of the mass-momentum system, since we assumed a null∇p field, an additional verification

is necessary

For each up there is only one p scalar field (except a constant) such that u = up − ∇p is

divergence-free (∇ · u),

Thus, if the velocity fields evaluated by the code are divergence free, the field ∇p must be correct

However, it must be verified that the operator ∇· is correct (i.e., with the expected order of accuracy)
34 / 55

Code verification using the MMS method (3/4)

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.01 0.1

u (ph=1.98)
v (ph=1.78)
w (ph=1.88)
t (ph=1.93)

div (ph=1.94)

Error versus mesh size ∆h = Lx/Nx for meshes concentrated in axis y and z with

Nx = Ny = Nz. In parentheses the temporal order of accuracy (ph).

35 / 55

Code verification using the MMS method (4/4)

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 0.0001

u (pt=2.00)
v (pt=2.00)
w (pt=2.00)
t (pt=2.00)

Errors versus time step ∆t. In parentheses the temporal order of accuracy (pt).

36 / 55

Verification of the simulation (1/5)

After the absence of errors in the code has been ensured, it is necessary to determinate if the simulation
parameters used allow to obtain numerical results reasonably close to the asymptotic solution

The parameters are:

Mesh size

Mesh concentration

Time step

Domain length in the direction orthogonal to the main flow (Lx)

Beginning of the averaging period (t0)

Integration time to evaluate the flow statictics (∆ta)

For all them, a compromise between accuracy and computing time must be accepted

37 / 55

Verification of the simulation (2/5)

A total of eleven 2D and 3D simulations have been carried out and compared in order to estimate the

accuracy of the results

Meshes between 4,8× 104 to 3,1× 106 nodes have been used

Nx Ny Nz Lx γy γz ∆ymin ∆ymax ∆zmin ∆zmax ∆t

A 64 156 312 1 1.5 1.5 4,95× 10−4 2,70× 10−3 9,75× 10−4 5,35× 10−3 4,73× 10−8

B 32 78 156 1 2.0 2.0 5,08× 10−4 6,83× 10−3 9,75× 10−4 1,35× 10−2 5,14× 10−8

B2X 64 78 156 2 2.0 2.0 5,08× 10−4 6,83× 10−3 9,75× 10−4 1,35× 10−2 5,15× 10−8

C 16 39 78 1 2.0 2.0 1,10× 10−3 1,40× 10−2 2,03× 10−3 2,73× 10−2 6,25× 10−8

A2D - 156 312 - 1.5 1.5 4,95× 10−4 2,70× 10−3 9,75× 10−4 5,35× 10−3 4,89× 10−8

B2D - 78 156 - 2.0 2.0 5,08× 10−4 6,83× 10−3 9,75× 10−4 1,35× 10−2 3,17× 10−8

C2D - 39 78 - 2.0 2.0 1,10× 10−3 1,40× 10−2 2,03× 10−3 2,73× 10−2 6,25× 10−8

AB2D - 156 312 - 2.0 2.0 2,44× 10−4 3,38× 10−3 4,78× 10−4 6,70× 10−3 1,19× 10−8

AA2D - 218 438 - 1.5 1.0 3,48× 10−4 1,90× 10−3 1,26× 10−3 3,00× 10−3 2,42× 10−8

38 / 55

Verification of the simulation (3/5)
First-order statistics

3D 2D

-3000

-2000

-1000

0

1000

2000

3000

0 0.05 0.1 0.15 0.2 0.25

a
v
g
(
u
3
)

y

A
B

B2X

-3000

-2000

-1000

0

1000

2000

3000

0 0.05 0.1 0.15 0.2 0.25

a
v
g
(
u
3
)

y

A2D
AA2D
AB2D
B2D

Comparison of u3 in the section z = 15
16Lz

39 / 55

Verification of the simulation (4/5)
Second-order statistics

3D 2D

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 0.05 0.1 0.15 0.2 0.25

a
v
g
(
u
3
’
u
3
’
)

y

A2D
AA2D
AB2D
B2D

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 0.05 0.1 0.15 0.2 0.25

a
v
g
(
u
3
’
u
3
’
)

y

A
B

B2X

Comparison of u′3u
′
3 in the section z = 15

16Lz (where the discrepancies are largest).

40 / 55

Verification of the simulation (5/5)

Estimation of the integration period ∆ta needed to evaluate first- and second-order statistics.

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 0.005 0.01 0.015 0.02 0.025 0.03

m
a
x
-
a
v
g
(
u
3
’
u
3
’
)

Integration Period (∆ta)

Maximum u′3u′3 at the central z plane versus ∆ta

41 / 55

Instantaneous Isotherms

42 / 55

Temperature and Nusselt Instantaneous Fields

3D 2D

43 / 55

Averaged Temperature Field and Streamlines

3D 2D

44 / 55

Kinetic Energy Balances (1/3)

The transport equation for kinetic energy, e = 1
2u ·u is obtained from the scalar product of velocity

vector and momentum equation,

∂e

∂t
= −∇ · (eu) + Pr∇ ·

[
u ·

(
∇u +∇ut

)]
− Pr φ−∇ · (pu) + u · f

Where φ (u) =
(
∇u +∇ut

)
: ∇u. The term −Pr φ is the kinetic energy dissipation ratio that

arises from the viscous forces term Pr∇2u.

Integration of previous expression in the domain Ω yields:

d

dt
E =

∫
∂Ω

[
−eu + Pr u ·

(
∇u +∇ut

)
+ pu

]
· dS +

∫
Ω

[u · f − Pr φ] dΩ

Where E =
∫

Ω
edΩ is the total kinetic energy.

45 / 55

Kinetic Energy Balances (2/3)

For our boundary conditions, the surface integral is null:

d

dt
E =

∫
Ω

[u · f − Pr φ] dΩ =

∫
Ω

[RaPrTu3 − Prφ] dΩ

The only terms that contribute to the evolution of the total kinetic energy arise from:

The viscous term: −Prφ, that necessarily dissipates kinetic energy to thermal energy (as

φ ≥ 0).

The body force term: u · f that can either generate or dissipate kinetic energy.

46 / 55

Kinetic Energy Balances (3/3)

Averaging for a long enough ∆ta, a global kinetic energy balance is obtained, that (per volume unit)

is:

Ra

V

∫
Ω

[
u3T + u′3T

′
]

dΩ︸ ︷︷ ︸
Eg

=
1

V

∫
Ω

[
φ (u) + φ (u′)

]
dΩ︸ ︷︷ ︸

Ed

That is, for a statistically stationary flow:

Eg, the averaged kinetic energy generation rate (only due to the bouyancy forces in our case)

Ed, the averaged kinetic energy dissipation rate due to viscous forces.

The spectro-consistent numerical scheme used for the simulations allows the discrete velocity fields

to verify exactly the global kinetic energy balance even for coarse meshes

This has been tested as an additional verification of the code.

47 / 55

Second-order Statistics (1/4)
Turbulent kinetic energy and turbulent kinetic energy dissipation rate

2D 3D 2D 3D

u′iu
′
i φ (u′)

48 / 55

Second-order Statistics (2/4)
Variance of temperature and ratio of turbulent kinetic energy generation

2D 3D 2D 3D

T ′T ′ u′3T
′

49 / 55

Second-order Statistics (3/4)
Components of Reynolds stress tensor

2D 3D 2D 3D

u′1u
′
1 u′2u

′
2

50 / 55

Second-order Statistics (4/4)
Components of Reynolds stress tensor

2D 3D 2D 3D

u′3u
′
3 u′2u

′
3

51 / 55

2D vs 3D profiles (1/2)

-1000

-500

0

500

1000

0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

a
v
g
(
u
2
)
,
a
v
g
(
u
3
)

a
v
g
(
T
)

z

3D
2D

Vertical profiles at y = 0,5Ly of u2, u3 and T .

52 / 55

2D vs 3D profiles (2/2)

0

5

10

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

a
v
g
(
N
u
)

s
d
e
v
(
N
u
)

z

3D
2D

Averaged local Nusselt numbers and standard deviation of local Nusselt numbers.

53 / 55

Conclusions (1/2)

Respect to the application of DSFD to incompressible DNS with PC clusters

Accuracy is close to machine precission, more than enough for CFD applications

Efficiency. It allows to solve Poisson equations with N = 3,1× 106 in about three seconds, using

36 processors at 900 MHz with 512 MBytes RAM

Scalability. Despite the low network performance, DSFD scales well up to 36-48 processors

Compared with sequential Additive Correction Multigrid it is about 30 times faster and orders

of magnitude more accurate

Therefore, within its range of application, it is an interesting alternative

54 / 55

Conclusions (2/2)

Respect to the comparison of the DNS 2D and 3D results:

First-order statistics are similar, but second-order statistics are substantially different

The main differences are at the vertical boundary layers, where the 2D simulations incorrectly
predict very low values for all the second-order statistics

The validity of 2D flow assumption for relatively low-Rayleigh number depends on DNS applications:

Development or enhancement of RANS turbulence models =⇒ NO VALID

Main features of natural convection flows, such as the local and overall Nu numbers =⇒ VALID

To confirm these conclusions, the present results will be extended to higher Ra numbers

As a general conclusion, the DSFD algorithm allows to use very low cost PC clusters for DNS
simulations with meshes of about 3× 106 control volumes and 106 time steps.

55 / 55

