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Abstract

Direct simulations of the incompressible Navier-Stokes equations are limited
to relatively low-Reynolds numbers. Hence, dynamically less complex mathe-
matical formulations are necessary for coarse-grain simulations. In this regard,
eddy-viscosity models for Large-Eddy Simulation (LES) are probably the most
popular example thereof. The present work focuses on the calculation of the sub-
grid characteristic length, a key element for any eddy-viscosity model. Namely,
a new approach based on the Taylor-series expansion of the subgrid stress ten-
sor in the computational space is proposed. Its simplicity and mathematical
properties suggest that it can be a robust definition of the subgrid characteris-
tic length that minimizes the effect of mesh anisotropies on the performance of
LES models. The performance of the proposed models is successfully tested for
decaying isotropic turbulence and a turbulent channel flow.
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In this work, a novel definition of the subgrid characteristic length, δ, is
proposed with the aim to answer the following research question: can we find a
simple and robust definition of δ that minimizes the effect of mesh anisotropies
on the performance of subgrid scale (SGS) models? In this regard, we consider
the definition given by

δlsq =

√

GδG
T
δ : GGT

GGT : GGT
, (1)

as a very good candidate. Unlike the most common definitions in the context
of LES that solely depend on geometrical properties of the mesh, i.e. ∆ ≡

diag(∆x,∆y,∆z), it is also dependent on the local flow topology, G ≡ ∇u.
The second-order tensor Gδ ≡ G∆ can be viewed as a gradient in the so-called
computational space. Actually, the definition of δlsq is obtained by minimizing
(in a least-squares sense) the difference between these two tensors

τ(u) =
δ2

12
GG

T +O(δ4) τ(u) =
1

12
GδG

T
δ +O(δ4). (2)
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Figure 1: Comparison between the new definition δlsq proposed in Eq.(1) and the classical

definition proposed by Deardorff [2], i.e. δvol ≡ (∆x∆y∆z)1/3. Left: 2D simple flow given
by in Eq.(3). Right: energy spectra for decaying isotropic turbulence corresponding to the
experiment of Comte-Bellot and Corrsin [3]. For clarity, latter results are shifted one decade.

They are the leading terms of the Taylor series expansion of the SGS tensor,
τ(u), for an isotropic and an anisotropic filter length, respectively. It fulfills a set
of properties: locality, boundedness, low cost and sensitivity to flow orientation.
To get a better understanding of δlsq, results for the following 2D case

∆ =

(

β 0
0 β−1

)

G =

(

0 1
1− 2ω 0

)

, (3)

are displayed in Figure 1 (left). Interestingly, for ω = 1/2 (simple shear flow)
δlsq = β−1. This situations mimics the typical quasi-2D grid-aligned flow in
the initial region of a shear layer. As it could be expected, δlsq is equal to the
grid size in the direction orthogonal to the shear layer. Finally, to show the
adequacy of δlsq for highly anisotropic grids, LES have been computed using
the Smagorinsky model for a set of (artificially) stretched meshes (see Figure 1,
right). Notice that for increasing values of Nz, results with δvol = (∆x∆y∆z)1/3

tend to diverge whereas results with δlsq rapidly converge. Testing the perfor-
mance of δlsq for wall-bounded flows using advanced LES [1] and DES models,
also for unstructured meshes, is part of our research plans.
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