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DNS of turbulent incompressible flows

Main features of the DNS code:

Structured staggered grids

High-order
symmetry-preserving schemes

Fully-explicit second-order
time-integration method

Poisson solver for 2.5D
problems: FFT + PCG

Hybrid MPI+OpenMP
parallelization

OpenCL-based extension for
its use on GPGPU

Air-filled differentially heated cavity at Ra = 1011 (111M grid points)

Plane impingement jet at Re = 20000 (102M grid points)
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DNS of turbulent incompressible flows

Turbulent square duct at Reτ = 1200 (172M grid points)

Square cylinder at Re = 22000 (300M grid points)

Air-filled differentially heated cavity at Ra = 1011 (111M grid points)

Plane impingement jet at Re = 20000 (102M grid points)
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Governing equations

Incompressible Navier-Stokes equations:

∇ · u = 0
∂tu + C(u, u) = Du −∇p

where the nonlinear convective term is given by

C(u, φ) = (u · ∇)φ

and the linear dissipative term is given by

Dφ = ν∆φ

Progress on eddy-viscosity models for LES
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Stopping the vortex-stretching1

Taking the curl of momentum equation the vorticity transport equation
follows

∂tω + C (u, ω) = C (ω, u) +D(ω)

Let us now consider an arbitrary part of the flow domain, Ω, with periodic
boundary conditions. Then, taking the L2 innerproduct with ω = ∇× u
leads to the enstrophy equation

1
2

d
dt (ω, ω) = (ω, C(ω, u)) − ν (∇ω,∇ω)

where (a, b) =
∫

Ω a · bdΩ. Unless, the grid is fine enough convection
dominates diffusion (in a discrete sense)

(ω, C(ω, u)) > ν (∇ω,∇ω)

1F.X. Trias et al. Computers&Fluids, 39:1815-1831, 2010
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Stopping the vortex-stretching

The vortex-stretching term can be expressed in terms of the invariant
R = −1/3tr(S3) = −det(S)

(ω, C(ω, u)) = 4
∫

Ω
RdΩ

Then, recalling that ∇× ω = ∇(∇ · u)−∆u and the boundary
contribution vanishes ∗, the diffusive term is given by the L2(Ω)-norm of
∆u

(∇ω,∇ω)
∗
= − (ω,∆ω) = (ω,∇×∇× ω)
∗
= (∇× ω,∇× ω) = (∆u,∆u) = ‖∆u‖2
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Stopping the vortex-stretching

The overall damping introduced by a model should be given by

HΩ = min
{
ν‖∆u‖2

4|R̃|
, 1

}

where R̃ =
∫

Ω RdΩ.

Notice that any model based on this ratio automatically switches off for:

Laminar flows (R → 0)
2D flows (λ2 = 0 −→ R = 0)
In the wall (near-wall behavior is given by R ∝ y1 and ‖∆u‖2 ∝ y0)
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Stopping the vortex-stretching

The overall damping introduced by a model should be given by

HΩ = min
{
ν‖∆u‖2

4|R̃|
, 1

}
One possible solution would consist on an eddy-viscosity type LES model:

νt ≈
4|R̃|
‖∆u‖2

Taking ‖∆u‖2 ≤ −λ∆(ω, ω) = 4λ∆Q̃, it becomes the eddy-viscosity
model2 based on the invariants R = −1/3tr(S3) = −det(S) and
Q = −1/2tr(S2).

λ∆ < 0 is the largest (smallest in absolute value) non-zero eigenvalue of
Laplacian operator ∆ on Ω. In a periodic box of size h, λ∆ = −(π/h)2.

2Roel Verstappen, Journal of Scientific Computing, 49:94-110, 2011
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Stopping the vortex-stretching

The overall damping introduced by a model should be given by

HΩ = min
{
ν‖∆u‖2

4|R̃|
, 1

}

Alternatively, regularizations of the non-linear convective term results
into a damping of vortex-stretching term, i.e. f reg |R̃| (where 0 < f ≤ 1)

f reg ≈ min
{
ν‖∆u‖

4|R̃|
, 1

}

Or a combination of both?
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Towards a simple LES model

Hence, a new eddy-viscosity model for LES

∂tu + C(u, u) = Du −∇p −∇ · τ(u) ; ∇ · u = 0

τ (u) = −2νtS(u)

has been derived from the criterion that vortex-stretching mechanism must
stop at the smallest grid scale

νt ≈
4|R̃|
‖∆u‖2

And what about the implementation?

No problems with 4|R̃| and ‖∆u‖2.
But, what about the discretization of ∇ · τ(u) ?

Progress on eddy-viscosity models for LES
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Discretization of 2∇ · (νtS(u)): a new simple approach3

∂tu + C(u, u) = Du −∇p + 2∇ · (νtS(u)), ∇ · u = 0

Ωs
dus
dt + C (us) us = Dus + MT pc + ?????? , Mus = 0c

where 2∇ · (νtS(u)) = ∇ · (νt∇u) +∇ · (νt∇uT ).

∇ · (νt∇uT ) = ∇(∇ · (νtu))−∇ · (u ⊗∇νt)

= ∇(∇ · (νtu))−C(u,∇νt)

−MT Ω−1
c Mũs︸ ︷︷ ︸

≈∇(∇·(νtu))

−C (us)(−Ω−1
s MTνt,c)︸ ︷︷ ︸

≈C(u,∇νt )

where [ũs ]f = [νt,s ]f [us ]f . Straightforward implementation!!!
3F.X.Trias et al. A simple approach to discretize the viscous term with spatially

varying (eddy-)viscosity Journal of Computational Physics, 253:405-417, 2013
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Discretization of 2∇ · (νtS(u)): a new simple approach
4th-order FVM on a staggered Cartesian grid
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Discretization of 2∇ · (νtS(u)): a new simple approach
2th-order FVM on a collocated unstructured grid
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Discretization of 2∇ · (νtS(u)): a new simple approach
Let’s make it even easier...

∇ · (νt∇uT ) = ∇(∇ · (νtu))−C(u,∇νt)

−MT Ω−1
c Mũs︸ ︷︷ ︸

≈∇(∇·(νtu))

−C (us)(−Ω−1
s MTνt,c)︸ ︷︷ ︸

≈C(u,∇νt )

Since ∇(∇ · (νtu)) is a gradient of a scalar field, this term can be
absorbed into the pressure, π = p −∇ · (νtu).

Therefore, the only term that needs to be discretized is

−C (us)(−Ω−1
s MTνt,c)︸ ︷︷ ︸

≈C(u,∇νt )
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Preliminary results
Turbulent channel flow

Reτ = 590 DNS Moser et al. LES 643
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Preliminary results
Turbulent square duct

Reτ = 300 LES 64× 32× 32
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Conclusions and Future Research

The ratio between the invariant R and the (total) dissipation provides
a proper differential operator for turbulence models.
Based on this, a new eddy-viscosity type LES models has been
derived.
A simple new approach to discretize the viscous term for
eddy-viscosity models has been proposed.

Test the performance of new eddy-viscosity type LES for other
configurations.
Try to properly combine regularization modeling and LES.

Progress on eddy-viscosity models for LES
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Thank you for your attention
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Further reading

Roel Verstappen, “When does eddy viscosity damp subfilter scales
sufficiently?”, Journal of Scientific Computing, 49 (1): 94-110, 2011

F.X.Trias, R.W.C.P.Verstappen, A.Gorobets, M.Soria, A.Oliva,
“Parameter-free symmetry-preserving regularization modeling of a
turbulent differentially heated cavity”, Computers & Fluids,
39:1815-1831, 2010.

F.X.Trias, A.Gorobets, A.Oliva, A simple approach to discretize the
viscous term with spatially varying (eddy-)viscosity, Journal of
Computational Physics, 253:405-417, 2013.
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