DNS of turbulence	Towards a simple LES 000000	New discretization methods for LES	Conclusions

Progress on eddy-viscosity models for LES: new differential operators and discretization methods

F.Xavier Trias*, Roel Verstappen*, Andrey Gorobets*,[†], Assensi Oliva*

*Heat and Mass Transfer Technological Center, Technical University of Catalonia

* Johann Bernoulli Institute for Mathematics and Computer Science University of Groningen, The Netherlands

[†]Keldysh Institute of Applied Mathematics of RAS, Russia

European Turbulence Conference 14 Lyon (France), September 1-4 2013

DNS of turbulence	Towards a simple LES 000000	New discretization methods for LES	Conclusions
C			

Contents

1 DNS of turbulence

Over the second state of the second state o

4 Results

DNS of turbulent incompressible flows

Main features of the DNS code:

- Structured staggered grids
- High-order symmetry-preserving schemes
- Fully-explicit second-order time-integration method
- Poisson solver for 2.5D problems: FFT + PCG
- Hybrid MPI+OpenMP parallelization
- OpenCL-based extension for its use on GPGPU

Air-filled differentially heated cavity at $Ra = 10^{11}$ (111M grid points)

Plane impingement jet at Re = 20000 (102M grid points)

DNS of turbulent incompressible flows

Turbulent square duct at $Re_{ au} = 1200$ (172M grid points)

Square cylinder at Re = 22000 (300M grid points)

Air-filled differentially heated cavity at $Ra = 10^{11}$ (111M grid points)

Plane impingement jet at Re = 20000 (102M grid points)

DNS of turbulence	Towards a simple LES 000000	New discretization methods for LES	Conclusions
Coursing	a mustic no		

Governing equations

Incompressible Navier-Stokes equations:

$$\nabla \cdot u = 0$$

$$\partial_t u + \mathcal{C}(u, u) = \mathcal{D}u - \nabla p$$

where the **nonlinear convective** term is given by

 $\mathcal{C}(u,\phi) = (u \cdot \nabla)\phi$

and the linear dissipative term is given by

 $\mathcal{D}\phi = \nu\Delta\phi$

Stopping the vortex-stretching¹

Taking the curl of momentum equation the **vorticity transport equation** follows

$$\partial_t \omega + \mathcal{C}(u, \omega) = \mathcal{C}(\omega, u) + \mathcal{D}(\omega)$$

Let us now consider an arbitrary part of the flow domain, Ω , with **periodic boundary conditions**. Then, taking the L^2 innerproduct with $\omega = \nabla \times u$ leads to the **enstrophy equation**

$$\frac{1}{2}\frac{d}{dt}(\omega,\omega) = (\omega,\mathcal{C}(\omega,u)) - \nu (\nabla \omega,\nabla \omega)$$

where $(a, b) = \int_{\Omega} a \cdot b d\Omega$. Unless, the grid is fine enough convection dominates diffusion (in a discrete sense)

 $(\omega, \mathcal{C}(\omega, u)) > \nu (\nabla \omega, \nabla \omega)$

¹F.X. Trias et al. Computers&Fluids, 39:1815-1831, 2010

DNS of turbulence	Towards a simple LES	New discretization methods for LES	Conclusions
000	00000	0000	000

The vortex-stretching term can be expressed in terms of the invariant $R = -1/3tr(S^3) = -det(S)$

$$(\omega, \mathcal{C}(\omega, u)) = 4 \int_{\Omega} R d\Omega$$

Then, recalling that $\nabla \times \omega = \nabla (\nabla \cdot u) - \Delta u$ and the boundary contribution vanishes *, the diffusive term is given by the $L^2(\Omega)$ -norm of Δu

$$(\nabla \omega, \nabla \omega) \stackrel{*}{=} - (\omega, \Delta \omega) = (\omega, \nabla \times \nabla \times \omega)$$

$$\stackrel{*}{=} (\nabla \times \omega, \nabla \times \omega) = (\Delta u, \Delta u) = \|\Delta u\|^2$$

DNS of turbulence	Towards a simple LES	New discretization methods for LES	Conclusions
	00000		

The overall damping introduced by a model should be given by

$$\mathcal{H}^{\Omega} = \min\left\{rac{
u \|\Delta u\|^2}{4|\widetilde{R}|}, 1
ight\}$$

where $\widetilde{R} = \int_{\Omega} R d\Omega$.

Notice that any model based on this ratio automatically switches off for:

- Laminar flows $(R \rightarrow 0)$
- 2D flows $(\lambda_2 = 0 \longrightarrow R = 0)$
- In the wall (near-wall behavior is given by $R \propto y^1$ and $\|\Delta u\|^2 \propto y^0$)

DNS of turbulence	Towards a simple LES	New discretization methods for LES	Conclusions
	000000		

The overall damping introduced by a model should be given by

$$H^{\Omega} = \min\left\{\frac{\nu \|\Delta u\|^2}{4|\widetilde{R}|}, 1\right\}$$

One possible solution would consist on an eddy-viscosity type LES model:

$$\nu_t \approx \frac{4|\tilde{R}|}{\|\Delta u\|^2}$$

Taking $\|\Delta u\|^2 \leq -\lambda_{\Delta}(\omega, \omega) = 4\lambda_{\Delta}\widetilde{Q}$, it becomes the eddy-viscosity model² based on the invariants $R = -1/3tr(S^3) = -det(S)$ and $Q = -1/2tr(S^2)$.

 $\lambda_{\Delta} < 0$ is the largest (smallest in absolute value) non-zero eigenvalue of Laplacian operator Δ on Ω . In a periodic box of size h, $\lambda_{\Delta} = -(\pi/h)^2$.

²Roel Verstappen, Journal of Scientific Computing, 49:94-110, 2011

The overall damping introduced by a model should be given by

$$H^{\Omega} = \min\left\{\frac{\nu \|\Delta u\|^2}{4|\widetilde{R}|}, 1\right\}$$

Alternatively, **regularizations** of the non-linear convective term results into a damping of vortex-stretching term, *i.e.* $f^{reg}|\tilde{R}|$ (where $0 < f \leq 1$)

$$f^{reg} \approx \min\left\{rac{
u \|\Delta u\|}{4|\tilde{R}|}, 1
ight\}$$

Or a combination of both?

Towards a simple LES model

Hence, a new eddy-viscosity model for LES

$$\partial_t \overline{u} + C(\overline{u}, \overline{u}) = D\overline{u} - \nabla \overline{p} - \nabla \cdot \tau(\overline{u}) ; \quad \nabla \cdot \overline{u} = 0$$

 $\tau \ (\overline{u}) = -2\nu_t S(\overline{u})$

has been derived from the criterion that vortex-stretching mechanism must stop at the smallest grid scale

$$\nu_t \approx \frac{4|\widetilde{R}|}{\|\Delta \overline{u}\|^2}$$

And what about the implementation?

- No problems with $4|\tilde{R}|$ and $||\Delta \overline{u}||^2$.
- But, what about the **discretization** of $\nabla \cdot \tau(\overline{u})$?

DNS of turbulence	Towards a simple LES 000000	New discretization methods for LES •000	Results 00	Conclusions
Discretizatio	on of $2 abla \cdot (u_t S)$	$\hat{b}(u)$: a new simple	approad	ch ³

$$\partial_t u + \mathcal{C}(u, u) = \mathcal{D}u - \nabla p + 2\nabla \cdot (\nu_t S(u)), \qquad \nabla \cdot u = 0$$

$$\Omega_s \frac{du_s}{dt} + C(u_s) u_s = Du_s + M^T p_c + ????? , \qquad Mu_s = 0_c$$

where $2\nabla \cdot (\nu_t S(u)) = \nabla \cdot (\nu_t \nabla u) + \nabla \cdot (\nu_t \nabla u^T).$

$$\nabla \cdot (\nu_t \nabla u^T) = \nabla (\nabla \cdot (\nu_t u)) - \nabla \cdot (u \otimes \nabla \nu_t) = \nabla (\nabla \cdot (\nu_t u)) - \mathcal{C}(u, \nabla \nu_t)$$

$$\underbrace{-\mathsf{M}^{\mathsf{T}}\Omega_{c}^{-1}\mathsf{M}\tilde{u}_{s}}_{\approx\nabla(\nabla\cdot(\nu_{t}u))}-\underbrace{\mathsf{C}(u_{s})(-\Omega_{s}^{-1}\mathsf{M}^{\mathsf{T}}\nu_{t,c})}_{\approx\mathcal{C}(u,\nabla\nu_{t})}$$

where $[\tilde{u}_s]_f = [\nu_{t,s}]_f [u_s]_f$. Straightforward implementation!!!

³F.X.Trias et al. A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity Journal of Computational Physics, 253:405-417, 2013

Discretization of $2\nabla \cdot (\nu_t S(u))$: a new simple approach

4th-order FVM on a staggered Cartesian grid

Maximum step-size

Discretization of $2\nabla \cdot (\nu_t S(u))$: a new simple approach

2th-order FVM on a collocated unstructured grid

Discretization of $2\nabla \cdot (\nu_t S(u))$: a new simple approach

Let's make it even easier...

$$\nabla \cdot (\nu_t \nabla u^T) = \nabla (\nabla \cdot (\nu_t u)) - \mathcal{C}(u, \nabla \nu_t)$$

$$\underbrace{-\mathsf{M}^{\mathsf{T}}\Omega_{c}^{-1}\mathsf{M}\tilde{u_{s}}}_{\approx\nabla(\nabla\cdot(\nu_{t}u))}-\underbrace{\mathsf{C}(u_{s})(-\Omega_{s}^{-1}\mathsf{M}^{\mathsf{T}}\nu_{t,c})}_{\approx\mathcal{C}(u,\nabla\nu_{t})}$$

Since $\nabla(\nabla \cdot (\nu_t u))$ is a gradient of a scalar field, this term can be **absorbed into the pressure**, $\pi = p - \nabla \cdot (\nu_t u)$.

Therefore, the only term that needs to be discretized is

$$-\underbrace{\mathsf{C}(u_s)(-\Omega_s^{-1}\mathsf{M}^T\nu_{t,c})}_{\approx \mathcal{C}(u,\nabla\nu_t)}$$

DNS of turbulence	Towards a simple LES 000000	New discretization methods for LES	Results ●0	Conclusions 000
Preliminary	y results			
Turbulent char	inel flow			

 $Re_{ au} = 590$ DNS Moser et al. LES 64^3

mean velocity

rms fluctuations

DNS of turbulence	Towards a simple LES	New discretization methods for LES	Results	Conclusions
			00	

Preliminary results

Turbulent square duct

 $Re_{\tau} = 300$ LES $64 \times 32 \times 32$

Conclusions and Future Research

- The ratio between the invariant *R* and the (total) dissipation provides a proper differential operator for turbulence models.
- Based on this, a new eddy-viscosity type LES models has been derived.
- A simple **new approach to discretize** the viscous term for **eddy-viscosity models** has been proposed.
- Test the performance of new eddy-viscosity type LES for other configurations.
- Try to properly combine regularization modeling and LES.

DNS of turbulence	Towards a simple LES	New discretization methods for LES	Conclusions
			000

Thank you for your attention

DNS of turbulence	Towards a simple LES 000000	New discretization methods for LES	Conclusions
Further read	ding		

- Roel Verstappen, "When does eddy viscosity damp subfilter scales sufficiently?", Journal of Scientific Computing, 49 (1): 94-110, 2011
- F.X.Trias, R.W.C.P.Verstappen, A.Gorobets, M.Soria, A.Oliva, "Parameter-free symmetry-preserving regularization modeling of a turbulent differentially heated cavity", Computers & Fluids, 39:1815-1831, 2010.
- F.X.Trias, A.Gorobets, A.Oliva, *A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity*, Journal of Computational Physics, 253:405-417, 2013.